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Abstract. People and organizations enter relationships, learn about them, adapt to them,
and sometimes decide to leave them. This paper develops a learning model of relationship
dissolution. The model also allows relationship quality to vary over time, following an
AR(1) process. The model nests two possible assumptions about the causes of relationship
dissolution. One is that relationships dissolve when agents find out that they are in fact bad
(pure learning model). The other is that relationships dissolve because they change over
time (pure shocks model). This paper analyzes the effect of parameters on agents’ separation
decision and the resulting separation hazard. It also examines how one can empirically
distinguish between the pure learning model, the pure shocks model, and a mixed model.
Observing an increasing and then decreasing separation hazard is not sufficient evidence for
the pure learning model. The shape of the variance of the transition function is enough to
distinguish between the three models. One can also use the impact of a bad observation on
the separation hazard to make such a distinction.

1. Introduction

When people enter a relationship, be it professional or personal, they usually do not

know with certainty how good this relationship is for them. Moreover, a relationship that

is good today may become undesirable tomorrow. Given this uncertainty, how do people

and organizations decide whether to continue or separate from a relationship? In non-

experimental empirical settings, we never observe the full information available to agents,

but we are typically able to observe their separation decisions and determine how long

the relationship was at the time of separation. These observations allow us to empirically

estimate the separation hazard, i.e. the probability that a relationship is terminated given

that it has survived so far. This paper develops a model which can ultimately allow the

researcher to infer the type of the hidden information agents base their separation decision on.

The model assumes that agents have an unbiased prior belief about the distribution of match
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qualities among potential partners, i.e. they know how likely they are to find a given match

quality when sampling from the population of potential partners. Then, agents observe

signals of relationship quality over time, and decide whether to separate or not based on

their updated belief about quality, the costs of separation, and their discount factor. Match

quality is assumed to be normally distributed and to evolve over time according to an AR(1)

process. Such a model nests two different theories of relationship dissolution. One theory

suggests that, when partners form a relationship, they are uncertain about its true quality,

and they learn about it over time. In this case, the relationship is an experience good (e.g.

Jovanovic, 1979). Crucially, such a model in its pure form assumes that relationship quality

does not change at all over time, the only thing that changes being the partners’ information

about their relationship. Such a learning model has been proposed by Farber(1994) to explain

the shape of job separation hazard and by Svarer (2004) to explain the shape of the divorce

hazard. The other reason why relationships may end is because they have changed: for

example, in the job match context, a worker may develop an alcohol problem that he did

not have when the employer first hired him. In this case, the relationship is an inspection

good but changes over time (e.g. Mortensen-Pissarides, 1994). Using a model that nests

both these theories, I analyze the effect of belief-shaping parameters, the cost of separation

and the discount factor on the threshold for separation (i.e. the match quality such that

the agent is indifferent between continuing and separating) and on the hazard of separation.

Separation costs and a lower discount factor (or higher discount rate) decrease the separation

threshold, and thus the separation hazard in all cases: this is intuitive since both parameters

diminish the returns to separating and looking for a better option. The effects of parameters

entering the belief are too complex to discuss in this introduction. I also determine how one

can empirically distinguish between the pure learning model (a la Jovanovic(1979)), the pure

shocks model (no uncertainty about relationship quality but relationship quality changes over

time) and the mixed model ( uncertainty about relationship quality and relationship quality

changes over time).
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The contribution of this paper to the literature is three-fold. First, this paper uses a

general model of relationship separation that nests two types of pre-existing models. While

some general results about the separation hazard have been derived by Jovanovic(1979) in

a model where match quality was assumed to be normal and constant over time, this paper

directly computes the quantitative effect of various parameters on the hazard of separation

in a more general model. Second, I introduce time-varying separation costs and analyze the

impact of such variation on the separation hazard. Third, and most importantly, I derive

empirically testable implications which allows the researcher to distinguish between the pure

learning model, the pure shocks model and the mixed model. The pure learning model has

often been proposed as an explanation of observed empirical separation hazards, even though

such a model is not entirely consistent with the observed pattern. Indeed, estimated job

separation hazards (Farber(1994),Marinescu(2006a)) or divorce hazards (Weiss-Willis(1997),

Svarer(2004)) are prima facie inconsistent with a constant match quality since they do not

decline to 0 with relationship length. Moreover, this paper shows that observing an increasing

and then decreasing separation hazard is not sufficient evidence in favor of the pure learning

model, since both the mixed model and the pure shocks model can yield the same pattern.

This paper is organized as follows. In section 2, I describe the proposed model of the op-

timal separation decision and analyze the impact of parameters on the separation threshold

and hazard in this context. Since it is not possible to derive quantitative estimates of the

impact of parameters in the general case, I move on to more specific assumptions about the

distribution of match quality in section 3. Section 4 discusses how one can empirically distin-

guish between the pure learning model, the pure shocks model and the mixed model. Section

5 discusses the limitations and implications of the results. Finally, section 6 concludes.
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2. The optimal separation decision as a Partially Observable Markov

Decision Process (POMDP)

The goal of this paper is to model the decision of an agent1 to continue or separate from

a relationship. The relationship links the agent with a partner. It is assumed that the

agent entering a new relationship does not know the exact value of such a relationship. The

quality of the relationship, or match quality, is what makes the relationship valuable to the

agent. The agent holds a prior belief about the distribution of quality in the population

of partners that it encounters. Then, at each period, the agent observes a signal of the

quality of the relationship. Based on these signals, the agent updates its belief using Bayes’

rule, and decides whether to continue with the current relationship, or end it and start a

new one2. If the agent decides to end the relationship, it has to pay a cost f(k) which is

a function of the length of the relationship k. Indeed, it is not uncommon that separation

costs go up with the length of the relationship: for example, in the case of the employment

relationship, employees go through probation, which means that dismissing them is cheaper

for the employer at low tenures.

Such a decision process can be modeled using the framework of Partially Observable

Markov Decision Processes (see Hauskrecht(2002) for a full description of such models).

This model allows solving for the optimal policy of the agent. The model is fully specified by

states, actions, transition and observation functions, reward function, discount and planning

horizon.

2.1. Definitions.

2.1.1. States,actions. The state of the world is defined by a vector of two variables: the

length of the current relationship k, and the quality of the agent-partner match, q. The

length of the relationship is perfectly observed by the agent. Moreover, to be realistic and

1The agent may be a person or an organization.
2This means that there is no explicit account for search in this model, and agents cannot choose to stay
unmatched. For a discussion of the implications of such assumptions, see the discussion in section 5.
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simplify calculations, we assume that the length of the relationship is limited to some length

kmax. As to match quality, it is assumed to take a finite number of values; if match quality

is a continuous distribution, this distribution is approximated through discretization. All

these hypotheses imply together that the state space is finite.

Using information coming from previous experience or some other source, the agent forms

an idea of how likely it is that, when forming a relationship, that relationship will turn out to

be of a given quality. The agent thus has a prior belief about match quality, which is defined

by a prior distribution of qualities P (q0). Assume that this prior distribution is normal with

variance σ2
0. I will denote by qk the value of match quality at length k, thus allowing it to

be time-varying.

At every time step, the agent has two possible actions a. it can continue the current

relationship (a = C) or separate from the current partner and begin a new relationship with

another partner (a = S).

2.1.2. Transition and observation functions. The transition function attributes a probability

to each new possible state as a function of the current state and the agent’s action. Before

I define this function, a few remarks are in order about the notation. There is a perfect

correspondence between the length of the relationship and the action taken, and so, to

simplify notation, I will dispense with the specification of the action when the latter is evident

given the length of the relationship. More precisely, a relationship length of 1 indicates a

separation during the previous time period, and any k > 1 indicates a decision to continue

the relationship at the previous period.

We are now ready to specify the match quality transition function, i.e. the probability

of a given match quality next period given current match quality. The evolution of match
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quality is governed by the following equations:

P (q1|qk) = P (q0)(2.1)

P (qk+1|qk) = N(ρqk + c, σ2
p)(2.2)

where P (q0) is the prior distribution of match qualities. Thus, match quality is assumed

to evolve over time according an AR(1) process, with 0 <= ρ <= 1. If ρ = 1, c = 0 and

σp = 0, then match quality is constant over time. The transition function is such that the

state of the world at time t + 1 only depends on the action of the agent and the state of the

world at time t, and not on the whole history of actions and states, i.e. the state process is

Markovian.

The observation function gives, for each action and actual match quality, the probability

of observing a given signal z, i.e. P (z|a, q). Note that the observation function is assumed

to be independent of the length of the relationship. I will denote by zk the value of the

observation at length k. The observation is defined as::

(2.3) P (zk|qk) = N(qk, σ
2
obs)

2.1.3. Belief and belief transition function. A belief state is a distribution of probability over

the states of the world. While the length of the relationship is known with certainty, the

belief about match quality needs to be specified as a probability distribution. Given the

prior distribution of match qualities, the transition function and the observation function,

it is possible to use Bayes’ rule and compute the belief as a function of z1:k, the history of

observations from length 1 to the current length k of the relationship. The belief distribution

at length k, P (qk|z1:k), can be summarized by (q̂k, k), i.e. the expected value of the belief

distribution and the length of the relationship. To simplify notation, one can use q̂k to

summarize the belief distribution. Since beliefs fully summarize what the agent knows about

the system, it is convenient to express the agent’s decision problem in the belief space.
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Accordingly, from now on, whenever I refer to the state, I will mean belief state, and by

transition function, I will mean the belief transition function. It is important to note here

that the decision process expressed in terms of beliefs (rather than actual states of the world)

is Markovian. That is, it can be shown that in a POMDP, the belief about the state of the

world at time t+1 only depends on the action of the agent and the belief of the agent about

the state of the world at time t, and not on the whole history of actions and beliefs (see for

example Cassandra 1998).

Specifically, if the agent separates, its belief is defined by:

(2.4) P (q1|z1:k−1) = P (q1) =
∑
q0

P (q1|q0)P (q0)

Thus, if the agent separates from the current relationship, the next belief state does not

depend on the current belief state, but on the prior belief. If the agent continues, the

best estimate q̂k of qk given (2.2) and (2.3) is given by the Kalman filter solutions (see

Arulampalam et al. (2001)).

P (qk|z1:k) = N(q̂k, σ
2
k)(2.5)

P (qk+1|z1:k) = N(q̂k+1|k, σ
2
k+1|k)(2.6)

where

q̂k+1|k = ρq̂k + c(2.7)

σ2
k+1|k = σ2

p + ρ2σ2
k(2.8)

q̂k+1 = q̂k+1|k + Kk+1(zk+1 − q̂k+1|k)(2.9)

σ2
k+1 = (1−Kk+1)σ

2
k+1|k(2.10)
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In equations (2.9) and (2.10), Kk+1 is the Kalman gain and is defined as:

Kk+1 =
σ2

k+1|k

σ2
k+1|k + σ2

obs

(2.11)

=
σ2

p + ρ2σ2
k

σ2
p + ρ2σ2

k + σ2
obs

The belief transition function, i.e. the probability of going from belief state q̂k to state

q̂k+1 can be determined by first expressing the probability of a given observation at the next

period, zk+1. Indeed, zk+1 observation and the current belief q̂k fully determine the belief at

the next period q̂k+1. Specifically, the probability of observing zk+1 given q̂k is:

(2.12) P (zk+1|q̂k) = N(ρq̂k + c, ρ2σ2
k + σ2

p + σ2
obs3)

Since q̂k+1 = ρq̂k +c+Kk+1(zk+1−ρq̂k−c) is a linear function of zk+1, the transition function

in the belief space can be readily specified as:

(2.13) P (q̂k+1|q̂k) = N(ρq̂k + c, K2
k+1(ρ

2σ2
k + σ2

p + σ2
obs)) = N

(
ρq̂k + c,

(ρ2σ2
k + σ2

p)
2

ρ2σ2
k + σ2

p + σ2
obs

)
One interesting question is whether beliefs become more precise over time, i.e. whether

the variance of the belief σ2
k decreases with k. If match quality is fixed over time, i.e. if

σ2
p = 0 and ρ = 1, then we have σ2

k+1 = (1−Kk+1)σ
2
k, and since 0 ≤ Kk+1 < 1, this implies

that indeed σ2
k decreases with k. In other terms, with fixed match quality, beliefs do get

more precise over time, and in the limit σ2
k converges to 0, so that beliefs become perfectly

accurate. However, if σ2
p > 0, then σ2

k no longer necessarily decreases with k. This is because

while the agent accumulates observations, match quality changes, and therefore whether the

belief gets more precise as relationship length increases depends on whether observations are

sufficiently informative given the parameters of the match quality process. More precisely,

we have:

(2.14) σ2
k+1 < σ2

k ⇔ (σ2
p + ρ2σ2

k)(σ
2
obs − σ2

k)− σ2
obsσ

2
k < 0
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Since the variance of the transition function in equation (2.12) is an increasing function of

σk, and σ2
p and σ2

obs do not depend on k, condition (2.14) also indicates when the variance

of the transition function decreases over time.

2.1.4. Reward, discount, horizon. The reward function R associates a reward to each possible

combination of belief and action continue (C) or separate (S):

RC(q̂k) = q̂k(2.15)

RS(q̂k) = q̄ − f(k)(2.16)

where q̄ is the mean of the prior, f(k) is a separation cost which depends on the length of

the relationship k, and it is assumed that the agent discounts the future at rate δ ∈ [0, 1].

The reward function can be derived from two possible hypotheses about the observability

of the per period benefit of the relationship to the agent. Either the benefit is not directly

observed but is known to be equal to the relationship quality, and to be realized after the

observation: in this case, the benefit is trivially equal to the agent’s belief. Or the benefit is

equal to the observation next period: in this case, if we define the observation to have the

same expected value as the actual quality, then q̂k is indeed the agent’s best estimate of the

expected value of the observation, and hence the reward, at the next period.

The separation cost f(k) covers the direct cost of ending the current relationship, such as

a firing cost in the case of the employment relationship. It also covers the costs of beginning

a new relationship, such as hiring costs. If the two partners have diverging interests over

separation, i.e. if for example it is harder for the worker to find a new job than for the

firm to find a new worker, then the model is not complete because it does not explicitly

account for both partners’ rewards. However, if these diverging interests are known ex ante

and do not depend on match quality, then the party that is relatively more advantaged by

the separation can agree ex ante to make a fixed payment to the other party. This case is

covered by the model since the cost f(k) can also include any such payments.
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The definition of the reward function is compatible with a Nash bargaining solution where

the two partners split the surplus, so that, while the relationship continues, each partner

gets a fixed share. Suppose that α is the share received by the agent. The reward of the

agent would then be αq̂k if continuing and αq̄ if separating; but this change is not substantial

since it simply amounts to rescaling the distribution of match quality.

The planning horizon of the agent is assumed to be infinite. This means that the agent

is infinitely lived; or alternatively, the agent’s retirement from the relationships market is

at some date so far away in the future that given the discount factor, it does not play any

role in the agent’s current decisions. The model is thus not quite adequate for explaining

the behavior of “old” agents. That is typically not a problem if the agent considered is an

organization, but may be relevant if the agent is a person.

2.1.5. Value function. We now need to define what it means for the agent to follow an

optimal strategy. To do so, I will first define the notion of a strategy or policy, and the value

function for a policy. Define a policy π, which gives for each belief and relationship length

the action to be taken, i.e. either continue or separate. Define the Q function Qπ(q̂k, a) as

the expected return of taking action a today and then following the policy π in the future.

The value function V π(q̂k) gives the current and future rewards of the agent as a function

of current belief, assuming that the agent follows policy π from now on. The optimal policy

maximizes V π(q̂k), and gives rise to the optimal value function V ∗(q̂k). The optimal action

value function Q∗ is defined as a function of the optimal value V ∗(q̂k):

Q∗(q̂k, C) = q̂k + δ
∑
q̂k+1

P (q̂k+1|q̂k)V
∗(q̂k+1)(2.17)

Q∗(q̂k, S) = q̄ − f(k) + δ
∑
q̂1

P (q̂1|q̄)V ∗(q̂1)(2.18)

= Vnew − f(k), where Vnew = q̄ + δ
∑
q̂1

P (q̂1|q̄)V ∗(q̂1)
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The optimal value is given by the Bellman equation:

(2.19) V ∗(q̂k) = max
a∈[C,S]

Q∗(q̂k, a)

In this framework, the optimal policy followed by the agent is uniquely defined by τ(k), the

belief such that the agent is indifferent between continuing or separating from its partner

at relationship length k. In other terms, the threshold for separation τ(k) is defined by

the equalization3 of Q functions for the actions “continue” (equation (2.17)) and “separate”

(equation (2.18)), i.e.:

τ(k) + δ
∑
q̂k+1

P (q̂k+1|τ(k))V ∗(q̂k+1) = q̄ − f(k) + δ
∑
q̂1

P (q̂1|q̄)V ∗(q̂1)(2.20)

⇔ τ(k)− q̄ + f(k) + δ[
∑
q̂k+1

P (q̂k+1|τ(k))V ∗(q̂k+1)−
∑
q̂1

P (q̂1|q̄)V ∗(q̂1)] = 0(2.21)

2.2. Computing the value function and the optimal policy. To compute the optimal

policy, one starts at the highest possible relationship length, i.e. kmax. At that point, because

relationships come to a final ending, the value of a relationship is exactly equal to the value

of a new relationship, minus final separation costs, i.e. Vnew − f(kmax).

The algorithm starts with giving Vnew some arbitrary value. Then, at length kmax − 1,

Q(q̂k, S) and Q(q̂k, C) are computed using equations 2.18 and 2.17. The optimal policy at

kmax− 1 is then given by equation 2.19. These calculations are repeated for kmax− 2, kmax−

3, ....

It is thus possible to recursively compute the value up to length 0. Vnew is then defined

as the value of a relationship with length 0 and quality q̄ (the expected value of the prior

distribution). We start the loop over again until Vnew is numerically identical to its value in

3When performing computations, we only consider a finite number of match qualities. Therefore there will
typically be no belief that makes the agent indifferent between continuing and separating: rather, the optimal
action will be “separate” for some belief and “continue” for the next higher belief. In practice, I defined as
the threshold the minimum expected belief such that it is optimal for the agent to continue the relationship.
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the previous iteration4. One can thus determine the value function and optimal actions for

all beliefs and relationship lengths.

2.3. The impact of parameters on the optimal policy. In order to assess the impact

of parameters on the optimal policy, one first needs to show how the condition defining the

threshold in equation (2.21) is affected when parameters change. Define J as the left-hand

side of equation (2.21), i.e.:

J = τ(k)− q̄ + f(k) + δ[
∑
q̂k+1

P (q̂k+1|τ(k))V ∗(q̂k+1)−
∑
q̂1

P (q̂1|q̄)V ∗(q̂1)]

Consider some parameter x: we are interested in the sign of ∂τ(k)
∂x

. Given that the threshold

is defined by J = 0, we can use properties of implicit functions to determine the sign of ∂τ(k)
∂x

.

It is a known result that, if J(τ(k), x) = 0, then ∂τ(k)
∂x

= − ∂J/∂x
∂J/∂τ(k)

. It is easy to show that J

increases with τ(k), which implies that ∂J/∂τ(k) > 0. Hence, we have:

(2.22) sign(∂τ(k)/∂x) = −sign(∂J/∂x)

In the general case, it is not possible to determine sign(∂J/∂x). It becomes feasable, however,

if one uses a few approximations5. First, I show that, if k is small, then q̂k = q̂k+1 implies

that V ∗(q̂k) ≈ V ∗(q̂k+1). This allows me to drop k from q̂k. I then proceed to determine the

sign of ∂J/∂x, which will involve some more approximations.

Early in the relationship, if q̂k = q̂k+1, there is only a negligible difference between V ∗(q̂k)

and V ∗(q̂k+1). This is because, given the existence of a discount factor, the maximum

possible length kmax is too far away in the future to influence the current value. Thus, at

4This is a special case of the “value iteration” algorithm, which has been shown to converge to the solution of
the Partially Observed Markov Decision Problem (see Hauskrecht(2002)). Note however that this algorithm
is not the fastest possible to establish the optimal policy, because we compute the values for all possible
beliefs, whereas it is clear that if for some belief it is optimal to separate, then for all beliefs with lower
expected value, it is also optimal to separate. If computation time were a concern, one could therefore use
a faster algorithm.
5For each of these approximations, I will explain why it may be correct. Moreover, all the approximations
used are indeed good approximations in the cases for which I explicitly compute the threshold in section 3.
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short relationship lengths, the value of a given belief does not change with relationship length

k.

Using the approximation V ∗(q̂k) = V ∗(q̂k+1) for q̂k = q̂k+1 allows us to drop the subscript

of q̂, and the condition defining the threshold can then be rewritten as:

τ(k)− q̄ + f(k) + δ
∑

q̂

[P (q̂|τ(k))− P (q̂|q̄)]V ∗(q̂) = 0

The function J is consequently redefined as:

(2.23) J = τ(k)− q̄ + f(k) + δ
∑

q̂

[P (q̂|τ(k))− P (q̂|q̄)]V ∗(q̂)

I now show that typically:

(2.24)
∑

q̂

[P (q̂|τ(k))− P (q̂|q̄)]V ∗(q̂) < 0

This inequality will be important in determining the sign of the derivative of J with respect to

some parameter x. Let Pτ (q̂) be a shorthand for P (q̂|τ(k)) and Pq̄(q̂) a shorthand for P (q̂|q̄).

Note first that V ∗(q̂) trivially increases in q̂. The expression
∑

q̂[Pτ(k)(q̂) − Pq̄(q̂)]V
∗(q̂) is

the difference of two Gaussian-weighted means of the increasing series V (q̂). These means

are respectively taken in the neighborhood of E(Pτ ) and E(Pq̄). If the distributions Pτ and

Pq̄ have the same variance, and E(Pτ ) < E(Pq̄), then inequality 2.24 is satisfied. Now I

show that E(Pτ ) < E(Pq̄). If τ(k) = q̄, then equation (2.3) implies that f(k) = 0. If

f(k) > 0, then τ(k) < q̄, i.e. in the presence of positive separation costs, the threshold for

separation is lower than the expected quality of a new match. We have E(Pτ ) = ρτ(k) + c

and E(Pq̄) = ρq̄ + c, and therefore, E(Pτ ) < E(Pq̄).

In a more general case, the variances of Pτ and Pq̄ may differ and so the means∑
q̂ P (q̂|τ(k))V ∗(q̂) and

∑
q̂ P (q̂|q̄)V ∗(q̂) use different weights. Denote by σ1 the standard

deviation of Pτ (q̂) and σ2 the standard deviation of Pq̄(q̂). As long as σ1 is not much greater
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than σ2, we still have
∑

q̂[P (q̂|τ(k)) − P (q̂|q̄)]V ∗(q̂) < 0. In almost all cases that we will

examine, σ1 < σ2
6 , and so we typically have

∑
q̂[P (q̂|τ(k))− P (q̂|q̄)]V ∗(q̂) < 0.

2.3.1. Impact of the separation cost on the optimal policy. Taking the derivative of J with

respect to f(k), we get:

(2.25)
∂J

∂f(k)
= 1 + δ

∑
q̂

(Pτ (q̂)− Pq̄(q̂))
∂V ∗(q̂)

∂f(k)

∂V ∗(q̂)/∂f(k) decreases with q̂ because higher quality matches have a lower probability of

being eventually dissolved and thus the agent is less likely to bear the firing cost for higher

quality matches. Since ∂V ∗(q̂)/∂f(k) decreases with q̂, the second term of equation (2.25)

is positive7. Thus, ∂J/∂f(k) > 0, which implies that ∂τ(k)/∂f(k) < 0. As is intuitive, this

means that higher separation costs make the agent more willing to pursue relationships of

lower value. Hence, we have:

Proposition 1. Higher separation costs f(k) lower the threshold for separation τ(k).8

This implies in particular that if the separation cost increases over time, then the threshold

decreases over time. For example, if there is some sort of probation period, with a low

constant separation cost followed by a higher constant separation cost, then at the period

when the separation cost increases, the threshold will decrease. Moreover, in such a case, the

threshold will slightly increase at the end of the probation period (i.e. the initial period with

low separation cost). This is explained by the following consideration. As the end of the

probation period approaches, the value of separating from the relationship stays the same

but the value of continuing the relationship decreases because of the increased probability

6This is because it is typically the case that the agent’s belief gets more precise over time, and so since P (q̂|q̄)
is taken at length 0, its variance is greater than the variance of P (q̂|τ(k)), which is taken at some length at
least equal to 1.
7This is for the same reasons why the fact that V ∗(q̂) increases in q̂ implies that∑

q̂[P (q̂|τ(k))− P (q̂|q̄)]V ∗(q̂) < 0.
8Most propositions in this paper (including this one) are dependent on the approximations used. However,
they are still useful to understand the logic of the model, and they relate to each other in such a way that
it is useful to number them. When a proposition depends on approximations, I will signal it in a footnote.
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that a bad quality relationship will have to be terminated under the higher post-probation

separation cost. Since the value of continuation decreases relative to the value of separation

as the agent approaches the end of the probation period, the threshold increases.

2.3.2. The impact of the discount factor on the threshold of separation. Taking the derivative

of J with respect to δ, we get:

(2.26)
∂J

∂δ
=

∑
q̂

[Pτ (q̂)− Pq̄(q̂)][δ
∂V ∗(q̂)

∂δ
+ V ∗(q̂)]

It seems plausible that ∂V ∗(q̂)/∂δ is roughly constant over q̂, as a lower discount factor

roughly proportionally reduces the value of all levels of match quality9. If this assumption

is valid, then
∑

q̂[Pτ (q̂)− Pq̄(q̂)]δ
∂V ∗(q̂)

∂δ
= 0: this is because both Pτ (q̂) and Pq̄(q̂) add up to

1 over q̂. Then, equation (2.26) simplifies to:

(2.27)
∂J

∂δ
=

∑
q̂

[Pτ (q̂)− Pq̄(q̂)]V
∗(q̂)

We have already established that the above expression is negative. Thus, from equation

(2.22), we infer that:

Proposition 2. The threshold of separation τ(k) increases with a higher discount rate δ10.

The intuition for this result is that a higher discount rate has an impact that is similar to

that of a lower separation cost. Indeed, a higher discount rate implies that a good quality

match yields a higher discounted value, and therefore it is more advantageous to end a

mediocre match today in the hope of getting a better match in the future.

2.3.3. The impact a change in the transition function on the threshold of separation. We are

now interested in the effect of some parameter x that enters both Pτ and Pq̄. The derivative

9This is verified in all specific cases I will analyze in section 3.
10This proposition depends on the approximations used.
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of J with respect to such a parameter is:

(2.28)
∂J

∂x
=

∑
q̂

{(
∂Pτ (q̂)

∂x
− ∂Pq̄(q̂)

∂x

)
V ∗(q̂) + (Pτ (q̂)− Pq̄(q̂))

∂V ∗(q̂)

∂x

}

Signing the expression above does not seem to be feasible unless one uses a substantial

number of approximations. Therefore, the impact of parameters that enter both Pτ and Pq̄

on the threshold is ambiguous and will need to be determined for specific parameter values.

2.4. Hazard of separation. Deriving the impact of parameters on the hazard of separa-

tion is an important task because the separation hazard can be computed from empirical

data, while the threshold for separation is typically not observed. The theoretical hazard

of separation is the result of infinitely many agents confronted with the same separation

problem; it summarizes the average separation behavior of agents over relationship lengths.

One can compute the theoretical separation hazard once the threshold for separation is

known. Note that at length 0, when no observation has been made yet, q̂0 = q̄ for all

matches, i.e. for all agents the belief is the same as the prior. Let pk(q̂k) be the density of

agents who hold a belief with mean q̂k at length k, given that they follow the optimal policy

embodied in τ(k). The initial values for the distribution of agents’ expected beliefs about

match quality are:

p0(q̂0) =

 1 if q̂0 = q̄

0 otherwise
(2.29)

p1(q̂1) =
∑
q̂0

p0(q̂0)P (q̂1|q̂0) = P (q̂1|q̄)(2.30)

16



The hazard of separation at length k, hk, can then be computed recursively, starting at k = 1

and using the following steps:

hk =

q̂k=τ(k)∑
q̂k=q̂min

pk(q̂k)(2.31)

pk(q̂k) = 0 if q̂k ≤ τ(k)(2.32)

pk(q̂k) =
pk(q̂k)∑
pk(q̂k)

(2.33)

pk+1(q̂k+1) =
∑
q̂k

pk(q̂k)P (q̂k+1|q̂k)(2.34)

Equation (2.33) insures that the mass of agents is always normalized to 1.

2.5. The impact of parameters on the hazard of separation. Parameters affect the

hazard of separation through their effect on the threshold and the transition function. There-

fore, we will first discuss the impact on the hazard of changes in the threshold and the

transition function, and then proceed to the full analysis of the impact of parameters.

2.5.1. Impact of the threshold and the transition function on the hazard of separation. For a

given distribution pk(q̂k), the effects of a change in the threshold of separation τ(k) or the

transition function P (q̂k|q̂k−1) on the hazard of separation hk are straightforwardly described.

The impact of the transition function on the hazard of separation for a given threshold is

defined by equations (2.30) and (2.34).

Proposition 3. For a given threshold τ(k) and a given distribution of continuing rela-

tionships pk(q̂k), a higher variance for the transition probability P (q̂k|q̂k−1) implies a higher

separation hazard hk.

Indeed, a higher variance for the transition probability P (q̂k|q̂k−1) implies that more

matches will cross the threshold from one period k to the next (see equation 2.34). Thus, any

change in parameters that increases the standard error of the transition function P (q̂k|q̂k−1),
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will, for a given policy and distribution of continuing relationships, increase the hazard of

separation at length k.

For a given transition function, the threshold for separation affects the hazard of separation

as described by equation (2.31).

Proposition 4. The higher the threshold τ(k), the higher the hazard of separation hk.

Indeed, a higher threshold implies that a higher expected value of the belief distribution

is needed for the agent to continue the relationship.

2.5.2. Impact of parameters entering the transition function on the separation hazard. If

a parameter affects the variance of the transition function but has little impact on the

threshold, then proposition 3 determines the impact of such a parameter. If, however, the

parameter has a significant impact on both the threshold and the transition function, the

effect on the hazard function cannot be predicted but has to be calculated numerically. Let

us now examine the impact of the first type of parameters: can we say anything about it

since proposition 3 is conditional on the distribution of continuing relationships pk(q̂k)?

First, note that no change in the variance of the transition function can affect the starting

point for the calculation hazard: indeed, from equation (2.29), p0(q̂0) only depends on q̄.

Second, note that the hazard of separation at length k is determined by the successive

application of the transition function to the initial distribution p0(q̂0), with a truncation

of the distribution below the threshold at each step. Thus, if a parameter increases the

variance of the transition function at all lengths and does not affect the threshold, then,

from Proposition 3, it increases the hazard of separation at length 1 for sure. However, this

effect may be reversed with increasing length, i.e. it can be that a parameter that increases

the variance of the transition function at all lengths and does not affect the threshold actually

decreases the hazard of separation at longer lengths. Section 3, will show how this effect

occurs under some specific parameter values. Thus, we have that:
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Proposition 5. A parameter that increases the variance of the transition function at short

lengths, and does not affect the threshold, increases the hazard of separation at short lengths.

2.5.3. Impact of separation costs on the separation hazard. Higher separation costs decrease

the threshold and do not influence the transition function, therefore, from proposition 4:

Proposition 6. Higher separation costs f(k) decrease the separation hazard hk for all lengths

k11.

If separation costs do not depend on k, then higher separation costs decrease the hazard of

separation at all lengths. If there is a probation period, then the hazard of separation will be

higher during the probation period relative to the post-probation period. Moreover, because

the threshold increases when approaching the end of the probation period, the hazard of

separation also increases, creating a spike at the end of the probation period.

2.5.4. Impact of the discount factor on the separation hazard. A higher discount rate in-

creases the separation threshold and does not affect the transition function, therefore, from

proposition 4:

Proposition 7. A higher discount factor δ increases the separation hazard hk for all lengths

k12.

We have now completed the exploration of what can be said in general about the effects

of parameters on the threshold of separation and the separation hazard. In the next section,

I will compute and analyze these effects using specific parameters.

3. Impact of parameters on the hazard of separation

Since the impact of parameters on the separation hazard cannot be fully determined

analytically, it is useful to analyze the model for some given parameters.

11This proposition depends on the approximations used in assessing the effect of separation costs on the
threshold of separation.
12This proposition depends on the approximations used in assessing the effect of the discount rate on the
threshold of separation.
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3.1. Choice of parameters. The specific parameters used in this section can be found

in Table 1, reference case 1. The important point here is that parameters were cho-

sen to be such that the hazard of separation first increases and then decreases with re-

lationship length, a pattern that is typically found in studies of the firing hazard (Far-

ber(1994),Marinescu(2006a)) or the divorce hazard (Weiss-Willis(1997), Svarer(2004)). Note

that the specific value of the mean of the prior, q̄, is not substantial for the calculations since

the normal distribution is symmetric and defined over R. q̄ only matters relative to the sep-

aration cost. To make the interpretation of q̂k more intuitive, I chose the minimal value of q̂k

to be 0 and its maximal value to be 2q̄. Thus a positive separation cost is commensurate with

the per period value of the relationship. The parameters ρ and c, i.e. the parameters of the

AR(1) process were chosen so as to yield a random walk (ρ = 1 and c = 0); this is to keep

the model as close as possible from the Jovanovic(1979) learning model, in which match

quality is deterministic and constant over time. Finally, for computational purposes, the

belief space is divided in discrete steps. Specifically, the discretization uses equally spaced

values between some minimal and some maximal value of q̂k, as specified in Table 1. To

perform the computations in this section, I choose for each parameter a few values in the

neighborhood of the reference value, and I compute the variance of the transition function,

the separation threshold, and the resulting hazard of separation.

3.2. Results.

3.2.1. The impact of separation costs. As already pointed out, separation costs have no

impact on the transition function. The computations confirm that higher separation costs

do indeed lower the separation threshold. Note, moreover, that the threshold is almost

constant over relationship lengths; it increases very slightly as the relationship approaches

the maximal length. Since a higher separation cost decreases the threshold, it lowers the

separation hazard, as can be seen in Figure 1.
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One can also examine the impact of a probation period, i.e. instead of having constant

separation costs over the length of the relationship, separation costs are constant in the

beginning of the relationship, and they then increase to a higher and constant level after

some given length. In this case, I use a separation cost of 30 in the beginning, and 40

after the end of the probation period. I also show results for two different lengths of the

probation period, that is 12 and 24 periods. The separation thresholds are plotted in Figure

2. As predicted, one observes an increase in the threshold before the end of the probation

period, and lower thresholds afterward. The hazards are plotted in Figure 3. As a result of

the variations in the thresholds, the hazards increase right before the end of the probation

period, producing spikes in separations. The spike is higher with a shorter probation period

because, at lower lengths, there are more low quality matches that are close to the threshold,

and therefore a larger proportion of relationships is terminated due to the increase in the

separation threshold right before the end of the probationary period.

3.2.2. The impact of the discount factor. A higher discount factor has the same qualitative

effect as lower firing costs, and so I do not reproduce any graphs illustrating its impact here.

3.2.3. The impact of the process variance. As shown in Figure 4, an increase in the standard

error of the process leads to a higher variance of the transition function at all lengths.

Moreover, when the process variance is 1, the variance of the transition function decreases

with length, whereas it increases with length for values greater or equal to 2. Variances

converge to a constant value, which corresponds to the process variance13. As for the impact

on the threshold, a higher standard deviation of the process decreases the threshold (not

shown). Since a higher process variance increases the variance of the transition function but

decreases the threshold, the impact on the separation hazard is ambiguous.

13It is easy to show that if ρ = 1, then σ2
k = σ2

k+1 implies that the variance of the belief transition function
in equation 2.13 is equal to the process variance σ2

p. This implication does not hold however if ρ < 1.
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Figure 5 shows that the impact of the process variance on the separation hazard is overall

positive. The impact of an increase in process variance on the hazard is mainly explained

by the fact that a higher process variance increases the variance of the transition function.

What happens as the standard error of the process goes to 0, i.e. as the model becomes

closer and closer to a pure learning model a la Jovanovic(1979)? Figure 6 shows that, as

the standard error of the process decreases, the variance of the transition function keeps

decreasing at all relationship lengths. One also notices that when the standard deviation

is 0, i.e. in the pure learning model, the variance of the transition function no longer

converges to a strictly positive value beyond a certain relationship length, but tends to 0

instead. One can also note that as the process variance increases from 0, the variance of the

transition function converges earlier and earlier: this is because, as match quality evolves in

a more and more unpredictable way, the initial improvement in belief precision stemming

from observing additional signals of match quality reaches its limits earlier. Figure 7 shows

how the separation hazard changes as the process standard deviation increases above 014. In

the pure learning model just as in the reference model, the hazard goes up and then down

with relationship length. As the standard deviation of the process increases a little, the

hazard increases at all lengths, and especially so at higher lengths. With a process standard

deviation of 0.4, the hazard does not eventually decrease with relationship length. However,

with a process standard deviation of 0.8, we observe again that the hazard decreases at

higher lengths.

3.2.4. The impact of the observation variance. Because a higher observation variance implies

that the agent acquires information at a slower pace (each observation is less informative),

the higher the observation variance the closer the agent’s belief should stay to the prior at

low relationship lengths. In other terms, one can expect that at low relationship lengths a

higher observation variance will lead to a lower variance of the transition function. Figure

14The little bumps in the hazards are due to discretization artifacts.
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8 shows that, indeed, an increase in the observation variance decreases the variance of the

transition function at low relationship lengths, at least if we consider a standard deviation of

2 or more. Eventually, regardless of the observation variance, the variance of the transition

function converges to the same value15. Since the variance of the transition function and

the threshold of separation both decrease with the standard deviation of the observation, we

expect the hazard of separation to decrease with the standard deviation of the observation

at low lengths.

Plotting the separation hazard in Figure 9, we see that, as expected, the hazard decreases

with the observation variance at low lengths. At higher lengths the hazard increases with the

observation variance. The explanation for this subsequent increase is given by the evolution

of the distribution of continuing relationships with length. Intuitively, a noisier observation

does not allow the agent to detect the “lemons” as fast, which means that the hazard of

separation at low lengths is smaller. On the other hand, since with a noisier observation

the agent has not been able to sort out the lemons so well in the beginning of relationships,

there are more lemons left among continuing relationships. This is what drives the higher

hazard of separation at longer relationship lengths.

To understand this in the specific context of the model, let’s look at Figure 10. At

length 2, we observe that the distribution of continuing relationships (after separations took

place but before the next observation was obtained) with an observation standard deviation

of 6 is narrower than the distribution with an observation standard deviation of 0. This

implies that fewer low quality relationships are terminated at length 2 when the observation

standard deviation is 6 versus 0. At length 10, the distribution of continuing relationships

corresponding to a standard deviation of 0 has a higher density in the neighborhood of

the threshold. The higher proportion of low quality relationships at length 10 in the case

where the observation standard deviation is 6 is explained by the fact that overall fewer

15This is only the case because ρ = 1.
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low quality relationships have been terminated before length 10, and so there are more low

quality relationships to terminate at length 10 and later.

One last important thing to note here is that even if the observation standard deviation

is 0, i.e. there is no uncertainty about current match quality, we still observe that the

hazard of separation increases and then decreases with relationship length. This is very

important since it shows that a hazard of separation that increases and then decreases with

relationship length is not necessarily a sign of ”‘learning”’, if by learning we mean that the

agent is uncertain about the true value of current match quality and learns about it over

time. One may be curious about how a model without learning can generate such a pattern

in the separation hazard. The explanation for that is fairly simple. If separation costs are

high enough, it is not optimal to terminate all those matches that are below the mean of the

prior. Indeed, some of these matches, through random drift, may end up being good enough

to keep. In other terms, the threshold of separation lies to the left of the mean of the prior.

Now as match quality evolves over time and some relationships receive negative shocks, more

and more matches are pushed below the threshold. However, eventually most of the mass of

relationships near the threshold will have drifted below the threshold, and continuing matches

will be concentrated far away to the right of the threshold. In fact, assuming a random walk

as in the reference case, many matches randomly become extremely valuable (there is no

upward limit to the process) over time and the proportion of these matches among surviving

matches tends to increase over time. If the quality process was not a random walk but

converged to some relatively high value, we would also observe that the hazard eventually

decreases, since the density of continuing matches would tend to concentrate to the right of

the separation threshold.

3.2.5. The impact of the prior variance. As shown in Figure 11, a higher prior variance

increases the variance of the transition function at low lengths. However, the variance of the

transition function eventually converges to the same value, irrespective of the prior variance.
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The convergence is explained by the fact that, if match quality is time-varying, the prior

ceases to matter after a while. Note that, with a prior standard deviation smaller than 3,

the variance of the transition function increases with length. Moreover, a higher standard

deviation for the prior increases the threshold for separation. The effects on the variance

of the transition function and the threshold together imply that the hazard of separation

should increase with prior variance at short lengths.

Figure 12 shows that indeed with a higher standard deviation of the prior, the hazard of

separation is higher at low lengths. However, at higher lengths, the hazard is higher for a

lower standard deviation of the prior. This is explained by the fact — mentioned earlier when

discussing the impact of the observation variance — that a lower variance of the transition

function at short lengths leads to a permanently higher separation hazard all other things

equal.

3.2.6. The impact of the drift. The drift in the match quality process does not affect the

variance of the transition function. It does however change its mean in a straightforward

additive way, as seen in equation (2.12): the smaller the drift, the less relationship quality

improves over time. Thus, for a given threshold, a smaller drift means that, at each length,

more relationships cross the threshold, which should lead to a higher separation hazard.

On the other hand, it turns out that a larger drift has a positive effect on the separation

threshold. Since these two effects go in opposite directions, the impact on the hazard of

separation is ex ante ambiguous.

In fact, a larger drift has a negative impact on the hazard of separation, which means that

the effect on the mean of the transition function dominates the effect on the threshold.

3.2.7. The impact of the AR(1) parameter of the process. The AR(1) parameter ρ of the

process has a positive impact on the variance of the transition function, as illustrated by

Figure 13. This positive impact is small at low lengths and increases thereafter. A higher
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ρ increases the separation threshold. These elements together imply that a higher ρ should

increase the hazard of separation at low lengths.

Figure 14 shows that a higher ρ has very small positive effect on the hazard at very low

lengths, but decreases it for longer lengths. This is because the effect of ρ on mean match

quality given previous match quality (see equation 2.2) dominates: a larger ρ implies that

relationship quality does not deteriorate as fast, and thus a larger ρ decreases the separation

hazard.

4. Differences between the pure learning and the pure shocks models

In many empirical applications, the observation of a hazard of separation that increases

and then decreases with relationship duration has been taken as evidence in favor of a pure

learning model a la Jovanovic(1979). However, we have seen that the learning model is not

the only one that can yield such a result. It is possible to obtain such a pattern for the

separation hazard with both a pure shocks model (σobs = 0 and σp > 0) and a mixed model

(σobs > 0 and σp > 0). This section discusses how one can distinguish the pure learning

model (σp = 0, rho = 1, c = 0) from a mixed model with σp > 0, and a pure shocks model

with σobs = 0.

If one can observe the variance of the transition function at various relationship lengths,

one can infer which model is most likely to be correct. If the variance of the transition

function does not change with relationship length, then the pure shocks model is correct

and the two other models are rejected. If the variance of the transition function increases

with length then the mixed model is correct and the two other models are rejected. Finally,

if the variance of the transition function decreases with length, either the pure learning or

the mixed model can explain the data, while the pure shocks model is rejected. If one can

observe the relationship for long enough, then even if the variance of the transition function

decreases with length, one can distinguish the pure learning model from the mixed model.
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Indeed, in the pure learning model the variance of the transition function will eventually

converge to 0, which will not be the case in the mixed model.

If we do not observe the transition function variance, we can still make some distinctions

between models based on the observation of the separation hazard. If separation costs are

constant (as assumed here) or increasing with relationship duration, then the pure learning

model implies that the hazard decreases to 0 as relationship duration tends toward infinity.

This is because in the limit the agent knows with certainty what the quality of the relationship

is, and so only good relationships persist (the variance of the transition function converges

to 0). If, on the other hand, match quality evolves over time (pure changes model or mixed

model), then the hazard of separation never drops to 0 (unless separation costs become

exceedingly high). This is because if the quality of a relationship can change, even a very

good relationship can eventually become bad and be dissolved after a sequence of unfavorable

changes (the variance of the transition function converges to a positive value).

Another feature that distinguishes the pure learning model from the others is the impact

of a negative observation on the hazard of separation at different relationship durations.

A negative observation is some observation that signals low match quality; for example, it

could be an absence from the job in the case of a job match. Specifically, assume that if the

a negative shock occurred at relationship length k, then the agent observes zk < z∗, where

z∗ is some low value of the observation. The hazard hb given a bad observation zk < z∗ is:

hb(k) =
∑

q̂k<τ(k),q̂k−1

pk−1(q̂k−1)
P (q̂k|q̂k−1, zk < z∗)

P (zk < z∗|q̂k−1)
(4.1)

=
∑
q̂k−1

pk−1(q̂k−1)

∑q̂k=min(g(q̂k−1,z∗),τ(k))
q̂k=q̂min

P (q̂k|q̂k−1)

P (q̂k < g(q̂k−1, z∗))
(4.2)

where pk is defined as in equation 2.34, and the function g gives the value of q̂k, such that

given q̂k−1, this value corresponds to the observation of z∗ at period k. Indeed, q̂k−1 and zk

uniquely determine q̂k given distributional assumptions.
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Similarly, the hazard hg given a relatively good observation zk > z∗ is:

hg(k) =
∑

q̂k<τ(k),q̂k−1

pk−1(q̂k−1)
P (q̂k|q̂k−1, zk > z∗)

1− P (zk < z∗|q̂k−1)
(4.3)

=
∑
q̂k−1

I[g(q̂k−1, z
∗) ≤ τ(k)]pk−1(q̂k−1)

∑q̂k=τ(k)
q̂k=g(q̂k−1,z∗) P (q̂k|q̂k−1)

1− P (q̂k < g(q̂k−1, z∗))
(4.4)

where I is an indicator function.

It is important to note that for each relationship length k, these hazards are computed

assuming either zk < z∗ or zk > z∗, and, in both cases, a history of observations up to zk−1

that is consistent with the distributional assumptions and the optimal strategy of the agent.

Figure 15 plots the hb(k) and hg(k) under the pure learning model, i.e. assuming that

σp = 0. The parameters used in this case and for all the figures in this section are in Table 1,

reference case 2; these slightly different parameters were chosen to make the effects of interest

more easily visible on graphs. To facilitate the reading of Figure 15, hg, the hazard with a

relatively good observation (i.e. zk > z∗), is multiplied by 8.6, which is equal to hb(5)/hg(5).

We can see that the hg begins to increase later than hb, eventually catches up, and remains

roughly proportional to hb. The fact that hg begins to increase later than hb is explained by

the fact that initially the prior belief has a strong influence on the agent’s current belief. This

means that the agent needs a really bad observation to separate. However, by definition hg

implies that she got a relatively good observation (z > z∗), which is not sufficient to override

the prior (and separation costs) and trigger separation. In Figure 18, we can see that the

hazard ratio in the fixed match quality model decreases and then stabilizes as the relationship

duration increases.

In Figure 16, I plot hb(k) and hg(k) under the mixed model. The hazards calculated in

Figure 16 use the same parameters as those calculated in Figure 15, except that σp = 5

instead of σp = 0. In this case like in the pure learning case, hg begins to increase later than

hb and eventually catches up. However, past 5 periods, the two hazards are not proportional:
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instead, hg decreases faster than hb. To understand why this is the case, first note that hg

is driven by low quality relationships only, since only they are led to dissolve even in the

absence of a bad observation. By contrast hb is driven by both low quality relationships and

mediocre relationships that end up dissolving due to a bad observation. Now, the proportion

of low quality relationships decreases fairly steadily over time as more and more low quality

relationships dissolve. However, the proportion of mediocre relationships decreases slower

and slower over time: this is because while most relationships start out well above the

separation threshold, some of them eventually randomly drift into the ”‘mediocre”’ quality

zone. When looking at the hazard ratio in Figure 18 for the mixed model with changing

match quality, we see that it first decreases with relationship duration, and subsequently

increases again. The initial decrease is due to learning (σobs > 0) while the subsequent

increase is due to changes in relationship quality (σp > 0). Accordingly, by performing the

same calculations with different values of σobs, one can see that the initial decrease in the

hazard ratio is stronger with a higher σobs, i.e. when there is more scope for the agent to

keep learning new things about the relationship as time goes by. Similarly, the subsequent

increase in the hazard ratio is stronger as σp increases.

Finally, in Figure 17, I plot hb(k) and hg(k) under the pure shocks model. The model

uses the same parameters as the mixed model, except that here we have σobs = 0. In this

case, the hazard of separation in the presence of a bad observation is 1. This is because

there is no uncertainty about the current value of the match, so a bad observation implies

that the match is in fact just as bad as that observation. And since the definition of a bad

observation is such that this bad observation is smaller than the threshold of separation, all

relationships that get this bad observation separate. On the other hand, in this case, the

hazard of separation in the absence of a bad observation declines with relationship length.

This implies that the hazard ratio increases with relationship length, as can be seen in Figure

18. Note however that, as previously mentioned, it is possible to have a hazard of separation

that increases and then decreases with length, even in the case of a pure shocks model.
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Therefore, it is possible for the pure shocks model to yield a hazard ratio that decreases and

then increases with length.

So far, we have examined the effect of observing a bad signal at length k on separation

at length k. However, it is also interesting to ask how this effect evolves over time: relative

to those relationships that did not get a bad signal at length k, how much more likely are

relationships who did get a bad signal at length k to dissolve at lengths k + 1, k + 2, ...,

k + n? It is fairly straightforward to compute the hazard of separation at lengths k + 1,...,

k + n separately for those relationships that did get a bad signal at k and those that did

not. Figure 19 plots the ratio of these two hazards for k = 5 (the two hazards are the hazard

if a bad signal was observed at length 5, and the hazard if no bad signal was observed at

length 5) for both the pure learning model (σp = 0) and the mixed model (σp = 5) 16.

The figure shows that in both models the hazard ratio is largest in the periods immediately

following period 5. Thereafter, we can see that in the pure learning model, the hazard for

those relationships that got a bad observation at 5 remains larger than the hazard for those

relationships that did not get a bad observation at 5 (the ratio is no lower than 2.2). By

contrast, in the mixed model, the difference between the two hazards disappears with time

(the ratio converges to 1). These qualitative conclusions do not depend on the choice of

k = 5. The intuition for these results is as follows. In the pure learning model, the true

quality of the relationship is fixed. As a result, relationships that got a bad observation at

5 are on average worse than those that did not, and this difference persists over time. For

both those relationships that got a bad observation at 5 and the others, learning continues

until hazards converge to zero; however, until then, there will be more separations among

relationships that got a bad observation at 5 because they are worse on average. In the

mixed model, relationship quality changes continuously. As in the pure learning model,

those relationships that got a bad observation at 5 are on average worse than those that did

16Performing the same calculation for the pure shocks model is not interesting, since in that case all those
matches that got a bad observation are immediately terminated.
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not. However, since relationships evolve according to a random walk after length 5, their

quality at length 5 is less and less informative about their present quality as time goes by,

and after a while the two groups no longer differ in their separation hazards17.

4.1. Summary of testable implications of the model. We can now summarize the

testable implications of the model. First, if we can observe the variance of the transition

function, it is fairly easy to distinguish between the models at hand. If the variance of

the transition function decreases with relationship length and converges to 0, then the pure

learning model is correct. If the variance of the transition function changes over relationship

lengths for low relationship lengths but converges to a strictly positive value, then the mixed

model is correct. And finally, if the variance of the transition function is constant, then the

pure shocks model is correct. Second, the theory predicts that, as long as separation costs

are not too high and do not strongly decrease over the course of the relationship, the hazard

of separation will go to 0 in the case of a pure learning model, but not in the case of the pure

changes or the mixed model. Third, the ratio between the hazard with a bad observation

and the hazard without such a bad observation decreases and eventually stabilizes with

relationship duration in the case of the pure learning model. In the case of a mixed model or

the pure shocks model under some parameters, the hazard ratio decreases and then increases

with relationship duration. The pure shocks model, under a different parametrization, can

yield a the hazard ratio that only increases with length. Fourth, under both the pure learning

model and the mixed model, the impact of a bad observation on separation is positive and

decreases with time elapsed since the shock. However, while under the pure learning model,

the impact of labor market shocks remains positive, under the mixed model the impact of a

labor market shock tends toward 0 as time passes after the shock.

17This also holds if the AR(1) process is stationary. Indeed, since all relationships converge to the long-run
mean, past history becomes less and less relevant.
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5. Discussion

5.1. Effort and labor supply. The models presented have not explicitly integrated agents’

efforts. This is a very important issue as match quality could be in part determined by

agents’ efforts. For example, in the employment relationship, the employee can affect output

by supplying more or less unobserved effort, as in Holmstrom(1999). In a formal framework

similar to the one I use here, Holmstrom(1999) shows that labor supply will decline to 0 if an

employment relationship continues indefinitely and the worker’s ability is fixed. On the other

hand, if ability evolves stochastically, labor supply will be positive and stable over time (after

an initial period of adjustment). Homlstrom’s results imply that models with fixed match

quality are inconsistent in the presence of a serious moral hazard problem; these models

assume indeed that the agent (wrongly) believes that the benefits from the relationship do

not depend on the partner’s effort. If match quality evolves over time, then the model is not

necessarily inconsistent, even in the presence of moral hazard. Further exploration of this

issue is left, however, to future work.

5.2. General equilibrium. The analysis developed in this paper is in partial equilibrium;

it does not attempt to model the influence of the behavior of each agent on other agents.

If relationship quality is entirely match specific, then this is not a problem as the prior

distribution of match qualities faced by the agent is not influenced by the behavior of other

agents. If, however, match quality is at least in part due to some general characteristics that

make a partner desirable to all agents, then a change in behavior by other agents is likely

to change the distribution of prior match qualities. For example, if firms face higher firing

costs and, as a result, decrease their threshold for separation, then the distribution of prior

match qualities should have a slightly lower mean since now workers who were terminated

and are looking for a new job are a bit worse on average18. The feedback mechanism from

18This effect is smaller the more workers with no prior experience enter the labor market, and the more
match-specific productivity is.
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agents’ optimal behavior to the distribution of prior match qualities could in principle be

modeled within the framework used here, and it would be useful to do so in future work19.

Another related issue is that this model does not allow agents not to be in a relationship

at all. By assumption, the agent can only continue the current relationship or separate and

start a new one immediately. This is an important limitation in contexts such as the labor

market where vacancies and permanent layoffs do exist and are essential for understanding

the dynamics of the labor market. The model, however, already contains the tools to analyze

these issues, at least in a limited sense. Indeed, one can assume that at length 1 the separation

cost is extremely low, and call period 1 the screening period: thus, in period 1 the agent

meets a partner, gets a signal about match quality and decides to pursue the relationship

or not. This application will be developed in future work and can allow to determine, for

example, if firing costs reduce hiring (where hiring means not firing at length 1) more than

firing (at lengths 2 and above) and under which conditions this is the case.

5.3. Learning about match quality, learning on the job, and random shocks. The

model presented here can simultaneously account for learning about match quality, learning

on the job, and random shocks to match quality. These three elements are typically included

in separate models in the literature about match quality in the employment relationship.

Learning about match quality is thus the main component in Jovanovic(1979). Teulings

and van der Ende(2001) develop a model where match quality is subject to random shocks.

Using a model that integrates all these empirically relevant effects at the same time20 is more

efficient for empirical analysis because parameters can be determined jointly from a single

statistical model.

19One important challenge is that the feedback from behavior to the distribution of prior match qualities
would likely make the latter distribution non normal. Computations are greatly eased if one assumes nor-
mality of the distribution of prior match qualities, and to preserve these desirable properties, one would have
to devise a meaningful way to approximate the non normal distribution of prior match qualities by a normal
one.
20Nagypal(2004) offers a somewhat different way of integrating these effects in her model.
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6. Conclusion

This paper has developed a model of optimal matching and separation, allowing for par-

tially observed and time-varying match quality. Despite the limitations discussed in section

5 — some of which could be overcome in future work — the model is already very general

and sheds useful light on the mechanisms at play in relationship evolution and dissolution.

Specifically, I have shown that, in all models considered, higher separation costs and a lower

discount factor decrease the separation threshold and thus the separation hazard. The effect

of parameters entering the belief on the separation hazard mainly depends on the effect

of these parameters on the belief transition function21, i.e. the probability of the agent’s

holding a certain belief next period given the agent’s current belief. In all cases, an increase

in the variance of the belief transition function leads to a higher hazard of separation at

short lengths. A lower observation variance, a higher variance of the prior, and a higher

variance of the error in the AR(1) process all increase the variance of the transition function

at short lengths, and thus increase the hazard at short lengths. The effect of parameters

entering the transition function at longer lengths is not so clear cut. If match quality is

assumed to be constant over time, then the separation hazard converges to 0, and so there

will be little effect at higher lengths. If however match quality follows and AR(1) process,

then an increase in the variance of the transition function at all lengths typically lowers the

separation hazard at higher lengths.

The class of models developed here lends itself to applications in various contexts. As

already mentioned, domains of choice would be the employment relationship, marriage, and

firm-suppliers relationships. Empirically, hazards of separation from an employment relation-

ship and hazards of divorce both increase and decrease over the length of the relationship,

but do not decline to 0. This implies that, very likely, the underlying match quality is

time-varying and separation costs are positive. In general, it is possible to determine which

21This is only true if we assume that the expected value of the prior does not change.

34



parameters best fit22 an empirically observed separation hazard and thus gain useful infor-

mation about the matching process. The model is also useful in predicting the impact of a

parameter change on the hazard of separation. For example, in Marinescu(2006), I exam-

ined the impact of a change in the probationary period on the hazard of an employment

relationship being terminated by the employer. Finally, this paper develops some simple

empirical tests that can allow researchers to determine whether the pure learning model, the

pure shocks model or a mixed model is best able to explain the data at their disposal.

22We have to keep in mind, however, that the greater the number of unobserved parameters, the less precise
the estimates. For example, I already pointed out that one cannot typically distinguish separation costs
from the discount factor just by looking at the separation hazard.
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Table 1: Parameters for the reference case 

 
Reference case 1 Reference case 2

Mean of prior 30 30

Standard deviation of prior 2 5

Standard deviation of process 4 5

Drift of process 0 0

Auto-correlation of process 1 1

Standard deviation of observation 4 10

Separation cost 30 30

Discount factor 0.85 0.85

Range of match qualities [0,60] [0,60]

Number of match quality values 801 801

Maximal length 50 50

Parameters of interest

Technical parameters

 
 

 

Figure 1: Separation hazard for different separation costs 
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Note: Parameter values other than separation costs are in Table 1, reference case 1. 
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Figure 2: Separation threshold with a probation period 
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Note: Parameter values other than separation costs and probation are in Table 1, reference case 1. 

 

Figure 3: Separation hazard with a probation period 
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Note: Parameter values other than separation costs and probation are in Table 1, reference case 1. 
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Figure 4: Variance of the transition function for different process standard 

deviations 
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Note: Parameter values other than the process standard deviation are in Table 1, reference case 1. 

 

Figure 5: Hazard for different process standard deviations 
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Note: Parameter values other than the process standard deviation are in Table 1, reference case 1. 
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Figure 6: Variance of the transition function for different process standard 

deviations (small values) 
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Note: Parameter values other than the process standard deviation are in Table 1, reference case 1. 

 

Figure 7: Hazard for different process standard deviations, small values 
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Note: Parameter values other than the process standard deviation are in Table 1, reference case 1. 
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Figure 8: Variance of the transition function for different observation standard 

deviations 
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Note: Parameter values other than the observation standard deviation are in Table 1, reference case 1. 

 

Figure 9: Hazard for different observation standard deviations 
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Note: Parameter values other than the observation standard deviation are in Table 1, reference case 1. 
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Figure 10: Distribution of continuing relationships for different observation 

standard deviations 
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Note: Parameter values other than the observation standard deviation are in Table 1, reference case 1. 

 

Figure 11: Variance of the transition function for different prior standard 

deviations 
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Note: Parameter values other than the prior standard deviation are in Table 1, reference case 1. 
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Figure 12: Separation hazard for different prior standard deviations 
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Note: Parameter values other than the prior standard deviation are in Table 1, reference case 1. 

 

Figure 13: Variance of the transition function for different AR(1) parameters 
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Note: Parameter values other than the AR(1) parameter are in Table 1, reference case 1. 
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Figure 14: Separation hazard for different AR(1) parameters 
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Note: Parameter values other than the AR(1) parameter are in Table 1, reference case 1. 

 

Figure 15: Hazards of separation with and without a bad observation in the pure 

learning model 
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Note: Parameter values other than the process standard deviation (set to 0 here) are in Table 1, reference 

case 2. 
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Figure 16: Hazards of separation with and without a bad observation in the pure 

learning model 

0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

 

 

Mixed model, bad observation

Mixed model, no bad observation *12.1

 
Note: Parameter values are in Table 1, reference case 2. 
 

Figure 17: Hazards of separation with and without a bad observation in the pure 

learning model 
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Note: Parameter values other than the observation standard deviation (set to 0 here) are in Table 1, 

reference case 2. 
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Figure 18: Ratio between the hazard with a bad observation and the hazard without 

a bad observation 
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Note: Parameter values other than the observation standard deviation and the process standard deviation are 

in Table 1, reference case 2. 
 

Figure 19: Ratio between the hazard with a bad observation at period 5 and the 

hazard without a bad observation at period 5 
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Note: Parameter values other than the process standard deviation are in Table 1, reference case 2. 
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