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Abstract

I obtain a slow response of prices and money and a decrease in the quantity
of money after interest rate shocks. I study two shocks: a permanent and a
temporary increase in the interest rate. Prices, nominal and real balances adapt
slowly to the shocks. I obtain the short and long run behavior of prices and
money in line with the empirical evidence with the same model. I calibrate the
model with U.S. data. Agents decide the time to exchange bonds for money:
markets are endogenously segmented. The model with fixed segmentation is
not able to generate decreasing nominal and real balances after the shocks.
The framework is a general equilibrium Baumol-Tobin model with focus on the
transition.
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1. INTRODUCTION

I obtain a slow response of prices and money and a decrease in the quantity of

money after monetary shocks. The key aspect of the model is endogenous market

segmentation: because of a transfer cost, agents decide when to participate in open

market operations and only a fraction of agents participates in each period. Several

empirical studies report a slow response of money and prices after monetary shocks.

For example, Cochrane (1994), Christiano, Eichenbaum and Evans (1999), and Uhlig

(2005)1. I offer a monetary model to explain these facts.

I study two different shocks: a permanent and a temporary increase of one percent-

age point in the nominal interest rate. The main contribution is to obtain persistent

real effects after monetary shocks using a general equilibrium model with the follow-

ing two characteristics. (1) In the short run, slow responses of prices and money and a

decrease in the quantity of money. (2) In the long run, price level and money growth

rates equal to the steady state inflation rate, and a decrease in real balances for the

permanent shock. These two characteristics of the transition are in accordance with

the empirical evidence on the short and long run behavior of prices and money.

Endogenous segmentation has substantial effects on the response of prices and

money compared to models with fixed transfer times. One important difference is on

the long run effects of interest rates on real balances. If the interval between transfers

is fixed, long-run real balances are increasing in interest rates (Romer, 1986)2. With

endogenous transfer times, in contrast, real balances are decreasing in the interest

rate. After a permanent increase in the interest rate, the present model predicts a

1Further evidence are in Leeper et al. (1996), Christiano et al. (1996, 2005), King and Watson
(1996), Bernanke et al. (2005), and the references therein. The literature on the empirical evidence
of monetary shocks with similar findings is extensive.

2Romer studies a case with log utility and zero intertemporal discount. But this result is not
particular to a specific version of the model. In a more general model, Silva (2007) finds that real
balances are decreasing in interest rates only for large elasticities of intertemporal substitution if the
transfer intervals are fixed.
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delayed response of nominal and real balances followed by a long-run decrease in real

balances whereas there is a long-run increase in real balances, close to zero response,

with fixed transfer times. The temporary shock also implies a delayed decrease in

nominal and real balances. Another difference is that the effects after the shocks last

longer with endogenous transfer times than with fixed transfer times. There are other

differences in the response of money and prices in the short and long run. I discuss

the differences in detail in section 4.

Agents have different money holdings. When there is a shock, agents with little

balances visit the bond market earlier and transfer money taking into account the

new interest rate path. Agents with more balances take longer to make their first

transfer after the shock. This generates the lagged responses of prices and money3.

Grossman and Weiss (1983) and Rotemberg (1984) proposed the first models with

market segmentation to study the liquidity effect. In these models, agents participate

in open market operations in fixed transfer times4.

This paper is most closely related to Alvarez, Atkeson and Kehoe (2002) and Al-

varez, Atkeson and Edmond (2003), henceforth AAK and AAE. In AAK, there is a

fixed cost of going to the asset market and making a transfer. Agents use the transfer

to purchase goods, it alleviates the cash in advance constraint. The cash constraint,

however, is assumed to bind in every period and so velocity is constant. In AAE, the

cash constraint is not assumed to hold in every period — agents can maintain some

of their balances for the future — and so velocity varies after monetary shocks. When

there are short run fluctuations, the heterogeneity of money holdings complicates the

problem and the model is simplified in AAE by fixing the transfer times. The current

3Christiano, Eichenbaum and Evans (1996) and Vissing-Jorgensen (2002) provide evidence that
households take time to adjust their portfolios after a shock.

4Fuerst (1992), Lucas (1990), Alvarez and Atkeson (1997), Alvarez, Lucas and Weber (2001),
Alvarez, Atkeson and Edmond (2003), and Occhino (2004) have further contributions with models
of exogenous market segmentation. Williamson (2006) combines market segmentation with search.
I use limited participation and market segmentation as synonyms.
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paper can be understood as an extension of AAK by letting agents maintain their

balances over longer periods or of AAE by endogenizing the transfer times5.

I endogenize the transfer times but I simplify the economy in a different way: I

study the transition given the new interest rate paths and remove all other shocks to

the economy. The government unexpectedly announces the new interest rate paths

from an initial steady state. One advantage of this assumption is to focus on the

effects of endogenous segmentation. Short-run shocks affect the consumption pattern

with endogenous and fixed segmentation and this can hide the effects caused by the

change in the transfer times. Without the short-run shocks, we can concentrate on

the effects of endogenous segmentation.

The framework is a general equilibrium version of Baumol (1952) and Tobin (1956).

I use the framework in Silva (2007) and focus on the transition. The model has

infinitely-lived agents, positive intertemporal discount, optimal transfer times and

optimal consumption pattern within holding periods6. The transfer cost is in goods.

This is important for the convergence of prices and money. I let prices and the real

interest rate change during the transition7.

I structure the paper in five sections: introduction, the model, steady state, tran-

sition after the shocks, and conclusions. All proofs are in the appendix.

5This paper is also related to Khan and Thomas (2007). I let agents decide the interval between
transfers while Khan and Thomas let agents decide to access the bond market according to a random
draw of the transfer cost. Another difference is that I study the effects on prices and money after
interest rate shocks, while Khan and Thomas study the effects on prices and interest rates after
changes in the money growth rate.

6Jovanovic (1982) and Romer (1986) focus on the steady state. Jovanovic assumes constant
consumption within transfer periods. The difficulty of allowing optimal transfer times is in the
relation between aggregate variables and individual behavior (Caplin and Leahy, 1991 and 1997).

7Romer (1987), Fusselman and Grossman (1989), Heathcote (1998) and Chiu (2005) have models
with transfer cost in utility terms. Romer and Heathcote have overlapping generations and obtain
convergence as old generations are removed from the economy. Romer fixes interest rates and prices
to keep the real interest rate constant. Chiu studies the steady state and analyzes small shocks in
which agents do not change their transfer times. Heathcote has a discrete-time version of Romer.
This discretization of time, however, implies steady state real interest rates increasing with inflation
and zero real money balances for a wide range of inflation rates.
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2. THE MODEL

The model is a general equilibrium version of the Baumol (1952) and Tobin (1956)

inventory-theoretic model of money demand: agents need to use money to purchase

goods and there is a transfer cost whenever agents sell interest-bearing bonds for

money. Silva (2007) discusses the model in more detail and focus on the steady state.

In this paper, I use the initial distribution of money holdings and study the transition.

I briefly state the model and then concentrate on the transition8.

There is a continuum of agents. Agents are infinitely lived and discount the future

at the rate ρ > 0. They incur a transfer cost when they sell bonds for money. Agents

choose consumption at each time, c (t), and the time of each transfer, Tj. Let Nj ≥ 0
j = 1, 2, ... denote the interval between transfers. Hence, the time of each transfer is

Tj =
Pj

s=1Nj, T0 ≡ 0. Time is continuous9.
Agents have preferences

U (c) =
∞X
j=0

Z Tj+1

Tj

e−ρt log c (t) dt. (1)

The transfer cost does not enter in the utility function. The logarithmic utility is not

essential for the results10.

There is a brokerage account and a bank account, as in AAE. The brokerage account

contains bonds used in the asset market and the bank account contains money used

for goods purchases. Each agents produces Y units of a single and nonstorable good in

every period. They sell the production in the goods market and deposit the proceeds

8The main differences from previous general equilibrium versions of the Baumol-Tobin model,
such as the seminal models of Jovanovic (1982) and Romer (1986), are that agents are infinitely-
lived, smooth consumption within holding periods, have positive intertemporal discount, and pay
the transfer cost in goods. The model is adapted from Grossman (1987), which has proportional
transfer costs within holding periods and constant transfer intervals.

9This is a simplifying assumption. It allows us to ignore integer constraints on Tj.
10Silva (2007) discusses the model with general constant relative risk aversion utility.
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in the brokerage account at each time. Agents cannot use the proceeds from goods

sales in the same period11. Production is assumed constant. This is not a restrictive

assumption. It allows us to isolate the effects of market segmentation on the behavior

of prices and money after interest rate shocks. It also simplifies the computation of

the transition. Denote the price level by P (t) and inflation by π (t).

Agents have to pay a fee γY , γ > 0, in order to transfer resources from the brokerage

account to the bank account. The transfer cost is the crucial assumption of the

paper. It generates a nondegenerate distribution of money holdings across agents, a

slow response of prices after monetary shocks and a propagation mechanism. The

transfer cost proportional to income is a technical assumption. Consumption and

money demand in the steady state will be linear in income with this assumption. A

value γ = 1 means that the transfer cost is equal to one working day per transfer12.

The initial resources in the bank account are M0. These balances can be used

promptly for goods transactions. The initial resources in the brokerage account, W0,

are equal to the initial bond holdings distributed by the government, B0, plus the

present value of production,

W0 = B0 +

Z ∞

0

Q (t)P (t)Y dt, (2)

where Q (t) is the value at time zero of one dollar to be received at time t. Each agent

is identified by the pair (M0,W0). There is a given initial distribution F of M0 and

W0.

Agents need to use money in order to buy goods. Therefore, they face the cash in

11An agent can be viewed as a family composed of two types of individuals, a worker and a
shopper, as in Lucas (1990).
12In a different setting, Khan and Thomas (2007) introduce stochastic transfer costs, as in Dotsey,

King and Wolman (1999).
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advance constraint

Ṁ (t,M0,W0) = −P (t) c (t,M0,W0) , t 6= T1, T2, ... (3)

where M (t,M0,W0) and c (t,M0,W0) denote money balances and consumption at

time t of agent (M0,W0). The given balances M0 are not necessarily the optimal

amount for consumption between 0 and T1. Therefore, agents are allowed to transfer

K ≥ 0 from the bank account to the brokerage account at the first transfer time T113.
After T1, with positive interest rates, agents transfer the exact amount of money

necessary to consume during the holding period.

Agents decide consumption and the optimal transfer times at time zero, given

the price level and the interest rate paths. Therefore, the individual maximization

problem is to maximize (1), subject to

∞X
j=1

Q (Tj)

Z Tj+1

Tj

P (t) c (t) dt+
∞X
j=1

Q (Tj)P (Tj) γY ≤W0 +Q (T1)K, (4)

and

Z T1

0

P (t) c (t) +K ≤M0 (5)

plus the non-negativity constraints for c (t), Nj, and K. I remove the reference to

(M0,W0) of these variables to simplify notation when it does not lead to ambiguity.

The constraint (4) states that the present value of all money transfers and the

payment of the transfer fee is equal to the present value of deposits in the brokerage

account. It uses the cash-in-advance constraint and the fact that money holdings

are exhausted at the end of each holding period. The constraint (5) states that

13K is the quantity of money not used in [0, T1) and transferred to the brokerage account at T1.
K > 0 if M0 is higher than the value otherwise chosen by the agent.
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consumption until the first transfer and any unspent balance K must be financed

from the initial money holdings M0.

The first order condition with respect to consumption within a holding period for

agent (M0,W0) is

e−ρtu0 (c (t,M0,W0)) = P (t)λ (M0,W0)Q (Tj) , Tj < t < Tj+1, j = 1, 2, ..., (6)

where λ (M0,W0) is the Lagrange multiplier of (4). Consumption within holding pe-

riods is decreasing if inflation is greater than or equal to −ρ. Agents concentrate
consumption in the beginning of a holding period to avoid losing resources for infla-

tion. See the appendix for the full characterization of the first order conditions.

Denote c+ (t) and c− (t) as consumption respectively in the beginning and in the

end of a holding period. Combining the first order conditions with respect to the

time Tj and consumption yields

γY [r (Tj)− π (Tj)] + r (Tj)

Z Tj+1

Tj

P (t) c (t)

P (Tj)
dt = c+ (Tj)

£
u
¡
c+ (Tj)

¢− u ¡c− (Tj)¢¤ ,
(7)

for j ≥ 2, where r (t) is the nominal interest rate at time t.
The left hand side of (7) is the marginal gain of delaying the transfer and the right

hand side is the marginal loss. The marginal gain is given by postponing the transfer

and decreasing real balances for purchases from Tj to Tj+1. It also takes into account

the net effect of increasing the period from Tj−1 to Tj and decreasing the period

from Tj to Tj+1. But this net effect is equal to zero with log utility. The marginal

loss on the right hand side is the net effect in utility of the change in the length of

holding periods Tj−1, Tj and Tj, Tj+1. From the first order conditions, c (t,M0,W0;Y )

and Tj (M0,W0;Y ) are homogeneous of degree one and degree zero in (M0,W0, Y ).
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If money, bonds and production are multiplied by the same factor, then all agents

maintain their transfer times and multiply consumption by this factor.

The initial quantity of bonds held by the public, BS0 , is financed by the government

via seigniorage. The government budget constraint is

BS0 =

Z ∞

0

Q (t)P (t)
ṀS (t)

P (t)
dt, (8)

where MS (t) denotes the money supply at time t. The government injects money

with bond exchanges in the asset market, that is, with open market operations. The

present value of these operations is reflected by the term BS0
14.

The market clearing conditions for money and bonds are
R
M (t,M0,W0) dF (M0,

W0) = M
S (t) and

R
B0 (M0,W0) dF (M0,W0) = B

S
0 . The market clearing condition

for goods must take into account the transfer cost. Denote the set of agents making

a transfer during [t, t+ δ) by A (t, δ) = {(M0,W0) : Tj (M0,W0) ∈ [t, t+ δ)}, for a
certain j ≥ 1. The number of transfers from t to t+ δ is given by the measure of

A (t, δ). The market clearing condition for goods is therefore

Z
c (t,M0,W0) dF (M0,W0) + γY lim

δ→0

Z
A(t,δ)

1

δ
dF (M0,W0) = Y . (9)

The second term in the left-hand side are the resources directed to transfers at t.

Equilibrium is defined as prices P (t), Q (t), demands c (t,M0,W0), and interval

between transfers Nj (M0,W0) such that (i) c (t,M0,W0) and Nj (M0,W0) solve the

maximization problem of each agent (M0,W0), (ii) the government budget constraint

holds, and (iii) the market clearing conditions for goods, money and bonds hold.

14Taxes and government purchases are not in the government budget contraint to abstract from
fiscal policy. They would not change results insofar as they are set exogenously.
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3. STEADY STATE: MONEY HOLDINGS AND CALIBRATION

I obtain the steady state interval between transfersN and the distribution of money

holdings across agents in this section. I aggregate money holdings and use it to

calibrate the transfer cost γ. The higher the value of γ, the higher N and the money-

income ratio (smaller velocity). We need to write the distribution of money holdings

before the shocks because agents react differently to shocks according to their money

holdings. In the next section, the shocks hit the economy initially in the steady state.

In the steady state, inflation and interest rate are constant and the interval between

transfers is the same for all agents: Nj (M0,W0) = N for all (M0,W0) and j ≥ 2.
Consumption, money and bond holdings are different across agents but they have

the same pattern within holding periods. As agents have the same present value

of production, the same number of agents must exchange bonds for money at each

time to imply constant aggregate money holdings and consumption. Therefore, the

distribution F of (M0,W0) is such that T1 (M0,W0) is uniformly distributed along

[0, N)15. Write N (r, γ, ρ) to stress the dependence of the interval between transfers

to the parameters of the model.

Consumption within holding periods is given by c (t) = c0e−r(t−Tj), Tj ≤ t < Tj+1,
by its first order condition, where c0 denotes consumption just after a transfer. The

market clearing condition for goods implies

1

N (r, γ, ρ)

Z N(r,γ,ρ)

0

c0e
−rxdx+

γY

N (r, γ, ρ)
= Y . (10)

15We can have constant aggregate consumption with different consumption patterns by adjusting
F . For example, F could be higher for those consumers with low consumption patterns. It is natural
for the steady state, however, to require uniform consumption patterns.
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The value of c0 as a function of N (r, γ, ρ) is then

c0 (N) = Y

µ
1− γ

N (r, γ, ρ)

¶
rN (r, γ, ρ)

1− e−rN(r,γ,ρ) . (11)

Consumption is homogeneous of degree one in income16. We need NY > γY to have

c0 > 0: production during holding periods must be greater than the cost to obtain

money for the same period. This in fact the case in equilibrium.

We obtain the optimal transfer interval with the first order conditions (6) and

(7). Proposition 1 writes the value of N given the interest rate, transfer cost, and

intertemporal discount, and establishes existence and uniqueness of N . Proposition

1 also states that N is decreasing in the interest rate and increasing in the transfer

cost.

Proposition 1. The optimal interval between transfers in the steady state,N(r, γ, ρ),

is given by the positive root of the equation

rN − r
ρ

¡
1− e−ρN¢ = ργ

∙
c0 (N)

Y

¸−1
(12)

where c0 (N) is given by (11). N (r, γ, ρ), exists and is unique for all positive r, ρ and

γ. Moreover, ∂N
∂r
< 0 and ∂N

∂γ
> 017.

The value of N implied by equation (12) is not far from the square-root rule. We

obtain N ≈
q

2γ
r
with a second-order Taylor expansion of e−ρN and erN , as rN and

ρN are close to zero18.

16Consumption can be less than Y during the holding period with transfer cost in goods. With
transfer cost in utility terms, the term 1− γ/N vanishes and c0 is always greater than Y .
17Proposition 1 do not depend on logarithmic utility. Silva (2007) proves these properties for

general constant relative risk aversion utility. We also have that limγ→0N = 0, ∂N
∂ρ > 0 and

NY > γY .
18For example, rN = 0.02 and ρN = 0.01 with r = 4% p.a., ρ = 3% p.a. and γ = 1.79,

see the calibration of γ below. Jovanovic (1982) also obtains the square-root formula with an
approximation in his model. Lucas (2000) obtains the square-root formula with the McCallum-
Goodfriend transactions technology.
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Define the functions M0 (n) and W0 (n) as the initial amounts of deposits in the

bank and brokerage accounts such that an agent with M0 (n) and W0 (n) transfers

resources at t = n, n + N , n + 2N and so on. M0 (n) is equal to steady state

consumption spending in the interval [0, n). On the other hand, W0 (n) is equal to

the present value of future transfer amounts and transfer fees.

Proposition 2. The values of initial money holdings,M0 (n), and initial wealth in

the brokerage account, W0 (n), such that agent (M0 (n) ,W0 (n)) chooses T1 = n are

M0 (n) = P0c0 (N) e
rne−rN

1− e−ρn
ρ

and

W0 (n) =
e−ρn

1− e−ρN
µ
P0c0 (N)

1− e−ρN
ρ

+ P0γY

¶
,

for n ∈ [0, N), where c0 (N) is given by (11).
With proposition 2, we can index agents by the time of the first transfer, n ∈ [0, N).

M0 (n) is increasing in n, agents with more initial money holdings make the first

transfer later. Analogously, W0 (n) is decreasing in n, agents with less initial bond

holdings make the first transfer later.

Individual money demand at time t is equal to spending from t until the next trans-

fer Tj (n). With propositions 1 and 2, and c (t) = c0e
−r(t−Tj), we obtain individual

money demands for each agent n. Aggregate money demand is then given by the sum

of individual money demands. It can be shown (Silva, 2007) that the steady state

real money demand, m =M (t) /P (t), is given by

m (r, Y, γ, ρ) =
c0 (N ; r, Y, γ, ρ)

ρ

∙
1− e−rN
rN

− e−ρN 1− e
−(r−ρ)N

(r − ρ)N

¸
, (13)

where c0 (N ; r, Y, ρ, γ) is given by (11) and N (r, γ, ρ) is given by proposition 1.

12



The income elasticity of the money demand in (13) is equal to one, as c0 is homo-

geneous of degree one in Y . More important, the real money demand is decreasing

in the interest rate, with interest elasticity close to −1/2. If the interval between
transfers is not allowed to change, that is, if N is fixed in the formula above, then the

real money demand is increasing in the interest rate, with elasticity close to zero19.

This is especially relevant to study the effects of a permanent increase in the interest

rate, as studied in section 4 in one of the shocks. The present model, with endogenous

segmentation, predicts a long-run decrease in the real money demand. A model with

fixed segmentation (fixedN), in contrast, would predict a long-run increase in the real

money demand. A negative interest elasticity of money demand is a well established

empirical fact. See, for example, Meltzer (1963) and Lucas (1988). I relate (13) to a

long run real money demand, as the interest rate in (13) refers to a steady state. We

obtain P0 with m and the initial supply of money MS
0 .

Calibration

I calibrate the model with U.S. annual data for 1900 to 1997 and (13). I use annual

data and an extensive period because (13) refers to a long run money demand. Also,

I use the model to predict the effects of monetary policy changes when the economy

is initially in the steady state. Therefore, the initial behavior in the model economy

should approximate the data for the long run. I use a similar dataset as in Lucas

(2000). In particular, I use M1 for the monetary aggregate.

There are only two parameters to calibrate in the model: ρ and γ. I set the

intertemporal discount so that inflation is equal to zero when r = 3 percent per year.

Therefore, ρ = 3 percent per year. For the transfer cost, I set γ so that the theoretical

money-income ratio given by (13) passes through the geometric mean of the data20.

19This result is not particular to this version of the Baumol-Tobin model. Romer (1986) shows that
the money demand is increasing in the interest rate if the interval between transfer is unresponsive
to the interest rate. Silva (2007) finds the interest elasticity is negative and close to −1/2 with fixed
N only with high elasticity of intertemporal substitution.
20Lucas (2000) also chooses r = 3 as the interest rate associated to zero inflation and calibrates
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That is, under the average interest rate during the period, 3.6 percent, the model

matches the average velocity of 3.9, or average money-income ratio of 0.257, during

the same period. This implies γ = 1.79. I discuss this value for γ in detail below.

Figure (1) shows the steady-state equilibrium values of the money-income ratio

m/Y given by equation (13) and the calibrated parameters along with the data.

Income in the model, Y , is assumed constant and normalized to one. Even though

the model abstracts from several details, the fit apparent in figure (1) is surprisingly

good. In particular, the model is able to predict the low velocity of the 1940’s period,

with low interest rates, and the high velocity of the 1980’s, with high interest rates.

Note that the increase in velocity from 2 to 7 from 1945 to 1981 in the U.S. is

not a puzzle in the model: velocity increased with the interest rate. What is more

difficult to explain is the relatively high velocity in the 90’s, and the relatively low

velocity in the beginning of the century, with interest rates between 3 and 6 percent.

Nevertheless, the model is able to predict the general pattern of the money-income

ratio. Lucas (2000) argues that a demand for real balances with constant interest

elasticity of −1/2, as in the present model predicts, has a good fit to U.S. data. An
increase in γ implies a parallel upward shift on the curve in figure (1). That is, γ has

very little effect on the interest elasticity, it only affects velocity.

A transfer cost parameter γ = 1.79 means that the average agent pays the equiva-

lent of roughly 1.8 working days per transfer. If the interest rate is equal to 4 percent,

the calibration implies N = 181 days or about 2 transfers per year from high-yielding

assets to money. These are not ATM withdrawals, which simply transfer resources

from checking accounts to currency but do not change M1. With 5 working days

per week and 52 weeks per year, the average agent devotes around 1.38 percent of

the total working time to financial transfers. According to OECD data, U.S. workers

worked around 1, 900 hours per year on average from 1950 to 1997. Therefore, the

the money demand so that it passes through the geometric mean of the data.
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Fig. 1. Money-income ratio in the steady state. The data points are for the U.S.
economy in the period 1900-1997, the monetary aggregate is M1. The circle o marks
the geometric mean of the data.

model estimates on average about 30 minutes per week devoted to financial trans-

actions when inflation is equal to one percent per year. In a very different setting,

the calibration in Lucas (2000) implies that agents devote 1 percent of their working

time to transfers when the interest rate is equal to 4 percent per year21, close to the

number found here. The present paper also predicts 1 percent of total working time

for transfers, and 22 minutes per week, if we consider 360 days working days per year

instead of 5× 52 = 260 working days.
21Lucas (2000), p. 267: k = 400⇒ s (0.04) = 0.01.
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The values of 22 to 30 minutes per week for financial transactions seem reasonable

and put in perspective the calibration of the model. Although the number of transfers

per year seems small, this number is consistent with the empirical findings in Vissing-

Jorgensen (2002) and it is common in the literature related to this paper. For example,

the calibrations in AAE imply holding periods from 1.5 to 3 years. In Khan and

Thomas (2007), the calibrations imply average holding periods from 1.2 to 2.4 years

and maximum holding periods from 1.5 to 2.4 years22. The transfer costs in the

present paper and in Khan and Thomas are not fully comparable, as in Khan and

Thomas there is a distribution of transfer costs and each agent has a different transfer

cost in each period. In particular, agents can avoid making a transfer when they have

a high-cost draw. However, the first calibration in Khan and Thomas implies that

the average ex-ante transfer cost corresponds to 2.6 percent of total production in a

year and the present paper implies a transfer cost that corresponds to 1 percent of

total production in a year23.

The present model and the models above have in common that the main concern is

to model the macroeconomic behavior of prices and money and not the microeconomic

behavior of consumers. In order to model the microeconomic behavior of consumers,

the structure of the model would have to account for the money demand of firms,

heterogeneous endowments, and other features. These values are not trivial. For

example, according to Bover andWatson (2005), M1 held by firms in the non-financial

22The calibrations in these papers use a monetary aggregate close to M2. As these papers also use
velocity for the calibration, a calibration with M1 would decrease the holding periods. AAE assume
in some simulations that a fraction of income is paid directly to the bank account.
23Khan and Thomas set the transfer cost between 0 and 0.25 uniformly distributed in the first

calibration (the calibration with smaller transfer costs) and obtain an average interval of 4.82 quar-
ters. This implies an average cost of 0.25/2 per transfer and 0.83 transfers per year. As the
model is in quarters, and production is normalized to one in this calibration, this corresponds to
0.25/2×0.83/4 = 0.026 of total yearly production. Those are ex-ante costs. As agents with high-cost
draws avoid making a transfer, the effective cost payment is smaller, but the calibration requires a
cost between 0 and 0.25. The present paper has 1.8 working days per transfer and 2 transfers per
year. This implies 1.8× 2/360 = 0.01 of total yearly production.
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sector is over 62 percent in the U.S. in 2000. This paper, and the literature in which

it is included, simplify all of these features in one type of agents. The agent in these

models has to be viewed as a summary of all participants in the economy24. As the

fit in figure (1) reveals, this assumption is enough to generate a money demand able

to reproduce the general pattern given by the data. In section 4, we will see that

the model also succeeds in reproducing important features of the effects of monetary

shocks, given the empirical evidence in Christiano et al. (1999) and in other studies.

4. INTEREST RATE SHOCKS

Suppose that the nominal interest rate has been constant for a long time and

suddenly changes. What will be the effects on prices, money and real balances?

I study two interest rate shocks. In the first, the interest rate increases permanently

from 3 to 4 percent per year. In the second, the interest rate increases to 4 percent

and gradually returns to 3 percent per year. I call the two changes a permanent and

a temporary shock to the interest rate respectively. Hence, I interpret a monetary

policy shock as a permanent or temporary increase in the nominal interest rate.

I change the interest rate rather than the money supply for two reasons: to be closer

to the policy of Central Banks and to simplify the analysis. First, Central Banks

usually track the interest rate in their daily operations rather than the quantity of

money (Woodford, 2003). Implicitly, they assume that the quantity of money changes

according to the interest rate25. Second, for a technical reason, there is the need to

decrease the dimensionality of the problem. With this procedure, instead of working

with two equilibrium prices, P (t) and r (t), and two market clearing conditions,

for goods and money, we have to find only one equilibrium price, P (t), with the

24See also the discussion in Edmond and Weill (forthcoming). See Alvarez and Lippi (2007) for a
Baumol-Tobin model focused on individual household behavior.
25Christiano, Eichenbaum and Evans (2005) and Grossman (1987) also assume that the monetary

authority adjusts the quantity of money according to the interest rate.
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market clearing condition for goods. With P (t) and the path for the interest rate, we

obtain the money supply using the market clearing for money. The problem would

be intractable if we had to find the price level together with the interest rate with

two market clearing conditions and endogenous transfer times.

As there have been no shocks for a long time, assume that the economy is initially

in the steady state. Change the analytical structure of the problem in the following

way, with the objective of approximating a situation in which the economy is initially

in the steady state and the interest rate changes unexpectedly. Suppose the existence

of two possible states. In state 1 the government sets the nominal interest rate at r1

for all periods. In state 2, the government sets the path of the nominal interest rate

at r (t) for each time, not necessarily constant. The realization of the state occurs at

time zero. Agents trade bonds contingent on the realization of the states. Money is

not contingent on the state.

Agents use M0 from time zero until the first transfer. We now have two budget

constraints from time zero until the first transfer in problem (1), (4) and (5). One

for each price level path in the respective state. On the other hand, we need only one

present value budget constraint after the first transfer, as agents use contingent bonds

to transfer resources between states. Finally, agents now maximize the expected value

of utility weighted by the probabilities of each state26.

The initial cross section of money holdings is close to the one with only one state

if the probability of the shock is small. Therefore, proceed in the following way to

obtain optimal consumption and transfer times. First, calculate money and bond

holdings such that the economy is in the steady state under the interest rate r1.

Money holdings are given by M0 (n) in proposition 2, where n ∈ [0, N) and N is the

holding period under r1. Second, calculate the new optimal individual consumption

and transfer times given the interest rate path r (t) and initial money holdingsM0 (n).

26See appendix for the analytical statement of the problem.
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Using this procedure, consumption at time t and transfer times Tj ≡ N1 + ...+Nj
for each agent n are

c (t, n) =
e−ρt

λQ (Tj (n))P (t)
, t ∈ (Tj (n) , Tj+1 (n)) , j ≥ 1, (14)

and

[R (Tj)−R (Tj−1)]− γY [r (Tj)− π (Tj)]

c+ (Tj (n))
= r (Tj)

1− e−ρNj+1
ρ

, j ≥ 2, (15)

whereQ (t) = e−R(t) is the bond price, R (t) ≡ exp
³
− R t

0
r (s) ds

´
, π (t) is the inflation

rate, c+ (Tj (n)) = e−ρTj(n)/ [λQ (Tj (n))P (Tj (n))] is consumption just after the jth

transfer, and λ is the Lagrange multiplier of the budget constraint after the first

transfer27. Equation (15) states how the transfer interval Nj relates to the next

transfer intervalNj+1 during the transition. The second term in equation (15) appears

because the transfer cost is paid in goods. It relates the price level with the decision

of transfer times and it allows for convergence after the shock28.

Different monetary shocks are described by the path of the interest rate after the

shock. I assume that the economy is initially in equilibrium with a constant nominal

interest rate equal to 3 percent per year. This implies zero inflation before the shock as

the intertemporal rate of discount is equal to 3 percent per year29. For the permanent

shock, the monetary authority sets r (t) = 4 percent per year. For the temporary

shock, the monetary authority sets the interest rate at 4 percent per year at time

zero and then reduces it towards 3 percent per year at a constant rate. The process

is, therefore, r (t) = r1 + (r2 − r1) e−ηt where r1 = 3, r2 = 4 and η is the persistency

27The equation for the first transfer time T1 (= N1) is in the appendix.
28This term disappears in models with transfer cost in the utility function.
29The initial state is arbitrary. I choose an initial steady state with zero inflation to facilitate

the interpretation of the effects of the shocks and the comparison of the final and initial states. An
initial state with positive inflation would not change the qualitative aspects of the model.
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of the shock. I follow AAE and choose η to approximate the response of the nominal

interest rate to a shock similar to the response shown in Christiano et al. (1999) and

Uhlig (2005)30.

I proceed numerically in order to obtain the equilibrium path of the price level

and the other equilibrium values. For each agent, we have a system of equations in

the form h (Nj, Nj+1) = 0. In order to have a finite system, I assume that after the

Jth transfer each agent chooses NJ+1 = N 0, where N 0 is the steady state transfer

interval under the new interest rate. The value of J should be large to approximate

the solution. We then have a system of J equations and J unknowns N1, ..., NJ for

each agent. See appendix for the detailed description of the algorithm.

The procedure to find the price level during the transition is the following. (i) Start

with a guess for the price level during the transition. (ii) Calculate the transfer times

and consumption for each agent. (iii) Check the market clearing condition. (iv) If

the difference between demand and supply is smaller than a preestablished value for

every t, stop. If not, change P (t) and repeat steps (i)-(iii).

The results of the simulations for the permanent and the temporary shocks are in

figures (2) and (3)31. The liquidity effect is common to both shocks. In the short run,

the price level adapts slowly, and money and real balances decrease. After six months,

there is an overshooting in the price level for both the permanent and the temporary

shocks, followed by dampened oscillations towards the new steady state. The figures

make reference to the money-income ratio M/ (PY ) — the inverse of velocity. The

behavior of this ratio is equal to the behavior of real balances in this model, as Y is

exogenous and constant, normalized to one.

Figures (2) and (3) also have the results for the case with fixed transfer times

30For the time in days, η = −12 log 0.87365 .
31The results of the daily values show oscillations with decreasing amplitude as time evolves. The

interval between transfers for each agent approaches gradually the interval in the new steady state.
In order to focus on the main results of the simulations, figures (2) and (3) show the annual means
of money and money-income ratio.
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for comparison. In order to find the equilibrium paths with fixed transfer periods,

I use the same model as described above but fix the transfer times. That is, I let

agents optimize within holdings periods but do not let them change the transfer

times. I fix the transfer interval equal to its value in the initial steady state. Hence,

the two economies behave in the same way in the first steady state, with the same

transfer intervals. They are different only after the shocks. With r = 3 percent, both

economies have an initial value N = 209 days. With the permanent shock to r = 4

percent, the model agents in the economy with endogenous transfer times gradually

decrease N to 181 days while they maintain the initial N in the economy with fixed

transfer times. With the temporary shock, the agents in the economy with endogenous

transfer times temporarily decrease N to 195 days on average but later return to the

initial value of 209 days, as r returns to 3 percent32. The economy with fixed transfer

times maintains the initial N during the transition. Different from the case with

endogenous transfer times, we can obtain analytical formulas for the transition with

fixed transfer times. The formulas for the transition in this case are in the appendix.

Note that a Baumol-Tobin model with fixed holding periods is similar to AAE and

to Grossman and Weiss (1983). The difference is that the model is now in continuous

time and that, different from AAE, I removed the short-run variations in the interest

rate. The results with endogenous and fixed N are very different. In particular a

model with fixed transfer times is not able to generate decreasing nominal and real

balances after an interest rate shock when we remove the short-run variations33.
32In the simulations, I discretize the interval [0,N) in units of 0.10 days, and say that agent n

makes a transfer at day t if t ≤ Tj (n) < t+ 1. With the permanent shock, the average number of
transfers per day increases from 10 to 11.6.
33The dynamics in AAE shows a decrease in the price level and money while the present model

with fixed N shows a sluggish response but no decrease. Although AAE and this version of the
model have fixed N , they are different in some aspects. Some differences are the following. First,
the dynamics presented here is the result of a single shock from an economy initially in the steady
state with no shocks while the dynamics in AAE is the impulse-response function obtained from a
stochastic system. The present paper removes all shocks with the exception of the change in the
path of interest rate at time zero. Second, the dynamics presented here with fixed N was obtained
analytically while the dynamics in AAE was obtained numerically, from the log-linearized system.
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Fig. 2. Results of a permanent interest rate shock from 3 to 4 percent per year. m0

and mf : steady states before and after the shock. Log percent from the values before
the shock. Annual means of money and money-income ratio, centered on July 1st,
the first point is the value before the shock.

Permanent shock

For the permanent shock, money decreases about 11 percent during the first two

years. The price level increases at a rate lower than its long-run growth rate for the

first six months. Real money decreases slowly towards its new steady state. After

one year, it decreases about 12 percent from its initial level and is 2 percent higher

than the new steady state level. The behavior of money after the shock is compatible

with the estimations in Christiano et al. (1999): money decreases for two quarters

Third, the price level in AAE was assumed constant at the moment of the shock while I assume
a constant Lagrange multiplier across the two states, derived from the fact that agents can trade
bonds contingent on the states. I also calculated the dynamics with a constant price in the moment
of the shock, as in AAE, and I obtained a similar path for prices as presented here.
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after a contractionary monetary policy. In the long run, real balances decrease, as the

interest rate is higher, and prices and money grow at the inflation rate, one percent

per year, equal to the difference between nominal and real interest rates. After the

initial stickiness in the price level, there is a sharp overshooting as agents initially

synchronize the timing of their response to the shock. This effect is common to both

shocks, I analyze it in more detail below.

In the present model, real balances decrease after a permanent increase in the nom-

inal interest rate. With fixed transfer times, long-run real balances are approximately

constant or increase34. The key to economize on money is to decrease holding peri-

ods when inflation is high. With fixed transfer times, real balances are approximately

constant after the shock (they increase 0.1 percent). Agents change their consump-

tion pattern within holding periods, but this is not enough to decrease real balances.

A negative long-run relation between interest rates and real balances is a well-known

empirical fact. The present model generates this fact. The steady states with fixed

and endogenous transfer times are similar if the transfer intervals are the same. But

the transition after the shock is very different.

Another difference from models with constant transfer times is that, in these mod-

els, the effects of a permanent change in the interest rate last for only one holding

period, 209 days with N fixed. I find more persistent effects. This is a surprising

result because the real effects could vanish as agents adjusted their transfer times.

The changes in the transfer times work as a propagation mechanism.

Temporary shock

For the temporary interest-rate increase, nominal and real balances decrease 5

percent during the first year. The price level increases towards its new steady state

level in the long run, 0.6 percent higher than its initial value. It does not jump to a

34This result is mentioned by Romer (1986). Grossman (1987) also mentions that the interest
elasticity is close to zero with fixed transfer periods.
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higher value as we would have in the usual CIA model35. The price level just after

the temporary shock behaves within the ranges of the empirical estimation in Uhlig

(2005). In the long run, however, the model predicts an increase in the price level36.

With the gradual decrease in the interest rate, agents will be eventually willing to

hold more real balances. As a result, prices increase.

As the nominal interest rate returns to its initial value, equal to the real interest

rate, the inflation rate returns to zero. Hence, in the long run, prices and money

are constant and real balances return to their initial level. Nominal money is higher

than its initial level because there is inflation during the transition. As real balances

return to its initial level, there must be an increase in the quantity of money to offset

the increase in prices. Prices and nominal money both increase 0.6 percent in the

long run.

The price level falls for both shocks and returns to its initial level only after around

30 days. During the first quarter, the price level is close to constant: the difference

between the geometric mean of the price level during the first quarter and the initial

price level is only 0.01 percent for the permanent shock and 0.02 percent for the

temporary shock. A researcher with access to the average price level during this

period would probably conclude that the price level is sticky after the shocks.

The reason for the effects in the short run and the dampened oscillations is the

different behavior of agents according to their initial balances. The transfer cost

makes agents economize in the use of money to avoid making a transfer too soon.

Agents with more balances will not increase their consumption rate within holding

periods as they would without the transfer cost. Agents with little balances make

35Note that this is the response of an increase in the interest rate, not a temporary contraction
of the money supply. Grossman and Weiss (1983) and other models of market segmentation study
the response after money supply shocks. Grossman (1987), with fixed segmentation (but with a
proportional transfer cost for transfers within periods), also study changes after an increase in the
interest-rate and find a long-run increase in the price level.
36Note that Uhlig (2005) restricts the behavior of the price level: he considers only dynamics with

a decreasing price level.
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Fig. 3. Results of a temporary interest rate shock from 3 to 4 percent per year. See
caption in figure (2) for notes and definitions.

a transfer sooner and can readjust their balances and consumption patterns. They

consume at a faster rate because they decrease the interval between transfers to reflect

the higher interest rate. Initially, the number of agents that have made a transfer

after the shock is relative small. Consequently, prices do not change instantaneously

with the change in the nominal interest rate.

After about six months, two groups of agents with different consumption patterns

meet. The first group is composed of agents who had little balances and were about

to make a transfer when the shock hit the economy. They are now making their

second transfer. The second group is composed of those who had substantial money

holdings at the time of the shock and have not made a transfer since that time. When

the two groups meet, there is a fast increase in the price level because the first group
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consumes at a faster rate and are now making the second transfer. The new steady

state interval between transfers for 4 percent interest rate is 181 days, as stated above,

approximately six months. The temporary fluctuations in the price level at intervals

of six months reflect these large groups of households synchronizing the timing of

their response to the shock.

Prices become smooth because agents pay the transfer cost in goods. The synchro-

nization of transfers is temporary as prices increase at these dates. Hence, agents

change their transfer times to periods in which prices are lower. This behavior even-

tually makes the number of transfers per day constant and the economy converges

to the new steady state. The redistribution of transfers is slow. The economy expe-

riences changes in the price level five years after the shock37. With transfer cost in

utility terms, the economy lacks this price incentive: the price level disappears from

the first order conditions and, in contrast, prices and money do not converge.

In the long run, with an increase in the interest rate, agents have more real balances

than they would like to have. As a consequence, each agent tries to spend more than

with a lower interest rate. As total demand cannot be higher than total output, and

output is constant, the price level increases. This explanation for the effects of an

interest rate increase is also in Friedman (1969).

Although the short and long run implications of the model are compatible with

the empirical evidence, as claimed above, the sharp fluctuations in the price level,

temporarily higher than the steady state changes, are not. The model focus on only

one mechanism of convergence, the change in the transfer periods, and abstracts

from several other elements present in the actual economies. With the comparison

of the same version of the model with fixed N , we can understand what is the role

37A different calibration would make the transition faster, but the qualitative aspects would not
change. For example, if we consider only the period after 1980, with higher velocity, γ decreases to
1.18. This implies smaller intervals N = 170 days under r = 3 percent and N = 147 days under 4
percent. The oscillation would occur at intervals of five months, decaying over time.
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of endogenous segmentation. It is beyond the objectives of this paper to predict all

price and money movements with this single modification. We would need to add

other elements to the model such as different types of agents, endogenous production,

and other kinds of shocks38.

Friedman (1969) studies the effects of a once-and-for-all change in the quantity

of money and of a continuous increase in the quantity of money. I relate the two

exercises with the temporary and permanent increase in the interest rate. The reason

is that the final effect of a temporary increase in the interest rate is a once-and-for-all

increase in the quantity of money, and the final effect of a permanent increase is a

continuous increase in the quantity of money. The present model gives an analytical

justification for the effects of the shocks. The advantage is that now we can quantify

the changes in prices and money, and we can give a meaning to what we understand

by the short and long run. With the calibration of section 3, most of the effects of

the policy shocks occur within the first six months, and the long run stands for the

behavior after two years, as prices and money are close to their new steady state

values39.

5. CONCLUSIONS

I introduce a monetary model to calculate the effects of interest rate shocks on

prices and money. The only departure from the cash in advance model is a transfer

cost whenever agents exchange bonds for money. I study two shocks: a permanent

and a temporary increase in the nominal interest rate. The implications of the model

are in accordance with the empirical evidence on the short and long run behavior of

38Khan and Thomas (2007) obtain smaller price fluctuations with stochastic transfer costs and
stochastic changes in the growth rate of money, together with contingent bonds on the transfer cost
and on the aggregate state.
39We can also be more specific about the predictions. For example, the path of the price level

after a permanent change is close to the price level C in figure 4 of Friedman (1969). Friedman also
predicts the overshooting in the price level.

27



prices and money. The price level slowly adjusts to the new steady state. Nominal

and real balances decrease after the shocks and slowly adapt to the shocks.

Agents optimally adjust their transfer intervals. This assumption changes results in

important ways. First, nominal and real balances decrease after the shocks. Second,

real balances eventually decrease with a permanent interest rate increase. Third,

the effects of the shocks last longer. The model with fixed transfer periods does

not generate these facts. In particular, with fixed transfer periods, money does not

decrease after the shocks, and real balances increase when the interest rate increases.

The models with endogenous and fixed transfer periods are similar in the steady state,

but they have very different behavior after the shocks.

The key parameter obtained with the calibration is the transfer cost value. The

data implies a high transfer cost and, in turn, a large support for the distribution of

money holdings. This increases the persistence of the shock. We obtain convergence

because the transfer cost is paid in goods. Agents avoid making transfers when prices

are high as the transfer cost is higher during these periods. The variation in the price

level makes the number of transfers in each day converge. The movement of agents

to rearrange their transfer intervals works as a propagation mechanism of the interest

rate shock.

The model does not have several features present in the actual economies to focus

on the mechanism of endogenous segmentation. This procedure emphasizes the role

of endogenous segmentation but produces volatile prices just after the shocks. As an

advantage, the comparison of the transition in the cases with fixed and endogenous

transfers highlights how endogenous segmentation alone is able to explain the observed

movements of prices and money.
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APPENDIX A - FIRST ORDER CONDITIONS AND PROOFS

The Lagrangian of the problem in (1), (4) and (5) isL =P∞
j=0

R Tj+1
Tj

e−ρtu (c (t)) dt+

λ (M0,W0) [W0 + Q (T1)K (M0,W0) −
P∞

j=1Q (Tj)
R Tj+1
Tj

P (t) c (t,M0,W0) dt −P∞
j=1Q (Tj)P (Tj)Y γ] + µ (M0,W0) [M0 −

R T1
0
P (t) c (t,M0,W0) dt − K (M0,W0)],

where Tj = Tj (M0,W0).
The first order conditions with logarithmic utility are — see Silva (2007) for general

constant relative risk aversion —
c (t,M0,W0) : for t ∈ [Tj, Tj+1], j = 1, 2, ...

P (t) c (t,M0,W0) = e−ρt/ [λ (M0,W0)Q (Tj)] , for t ∈ (Tj, Tj+1)
P (Tj) c

+ (Tj,M0,W0) = e−ρTj/ [λ (M0,W0)Q (Tj)] ,

P (Tj+1) c
− (Tj+1,M0,W0) = e−ρTj+1/ [λ (M0,W0)Q (Tj)] ;

and, for t ∈ [0, T1],

P (t) c (t,M0,W0) = e−ρt/µ (M0,W0) , t ∈ (0, T1) ,
P (0) c+ (0,M0,W0) = 1/µ (M0,W0) ,

P (T1) c
− (T1,M0,W0) = e−ρT1/µ (M0,W0) .

T1 :

e−ρT1 log c− (T1)− e−ρT1 log c+ (T1) = λ

∙
Q̇ (T1)

Z T2

T1

P (t) c (t) dt− Q̇ (T1)K

−Q (T1)P (T1) c+ (T1)
¤
+ µP (T1) c

− (T1) + λY γ
h
Q̇ (T1)P (T1) +Q (T1) Ṗ (T1)

i
;

Tj, j = 1, 2, ... :

e−ρTj log c− (Tj)− e−ρTj log c+ (Tj) = λ

"
Q̇ (Tj)

Z Tj+1

Tj

P (t) c (t) dt

−Q (Tj)P (Tj) c+ (Tj) +Q (Tj−1)P (Tj) c− (Tj)
¤

+ λγY
h
Q̇ (Tj)P (Tj) +Q (Tj) Ṗ (Tj)

i
.

K : Q (T1)λ (M0,W0)− µ (W0,M0) ≤ 0 (= 0 if K > 0); and the budget constraints.
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Using the budget constraint and the first order condition with respect to consump-

tion, we have λ (M0,W0) =
e−ρT1

ρ
×
h
W0 +Q (T1)K − γY

P∞
j=1Q (Tj)P (Tj)

i−1
. The

value of λ in the steady state is λ =
1

P0c0
. Working analogously for µ (M0,W0) with

the budget constraint for 0 ≤ t < T1, we obtain µ (M0,W0) =
1

M0−K
1−e−ρT1

ρ
.

Proposition 1. Proof. The first order condition with respect to Tj, j ≥ 2, implies

1

λ

e−ρTj

P (Tj)Q (Tj)
log

c+ (Tj)

c− (Tj)
= r (Tj)

Z Tj+1

Tj

P (t) c (t)

P (Tj)
dt

+ c+ (Tj)− Q (Tj−1)
Q (Tj)

c− (Tj) + γY [r (Tj)− π (Tj)] .

With the first order conditions for c (t), this expression simplifies to

c+ (Tj) log
Q (Tj−1)
Q (Tj)

= r (Tj)

Z Tj+1

Tj

P (t) c (t)

P (Tj)
dt+ γY [r (Tj)− π (Tj)] . (16)

In the steady state, r (t) = r, π (t) = π and r = ρ+ π. Moreover, Q (Tj−1) /Q (Tj) =
erTj−rTj−1 = erNj , Nj = N and c+ (Tj) = c0. So, (16) simplifies to

c0rN = r

Z Tj+1

Tj

P (t) c (t)

P (Tj)
dt+ ργY .

Using c (t) = c0e−r(t−Tj) and P (t) = P0eπt yields

c0rN = rc0e
ρTj

Z Tj+1

Tj

e−ρtdt+ ργY .

Solving the integral and rearranging yields the result in the body of the text.
For existence and uniqueness, define the functions a, b,G : (γ,+∞)→ R by

a (N) =

µ
1− e−rN
rN

¶³
1− γ

N

´−1
,

b (N) = rN − r
ρ

¡
1− e−ρN¢ ,

and

G (N) = b (N)− ργa (N) .
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a (N) = Y/c0 (N). The optimal interval N∗ is such that G (N∗) = 0.
limN→γ+ a (N) = +∞ and limN→γ+ b (N) is bounded. Therefore, limN→γ+ G (N) =
−∞. Also, limN→∞ a (N) = 0. Intuitively, for a given value of r, if N increases then
most of the consumption happens in the beginning of a holding period and c0 is very

large. Moreover, b0 (N) > 0, and a0 (N) =
1

(N − γ)2
1

rerN
¡
1 + rN − erN − γrerN

¢
<

0 because erN > 1 +Nr. Hence, G0 (N) = b0 (N)− ργa0 (N) > 0.
Even though G is increasing, it can be the case that limN→+∞G (N) < 0. This

possibility is ruled out because limN→∞ b0 (N) = r. Therefore, there exists an N∗

such that G (N∗) = 0. As G is increasing, N∗ is unique.
For ∂N

∂r
= −∂G(r;N)/∂r

G0(N) . We know that G0 (N) > 0. On the other hand, ar (r;N) =
1+rN−erN
erNr2N

¡
1− γ

N

¢−1
< 0 and br (r;N) = N

³
1− 1−e−Nρ

Nρ

´
> 0. Hence, Gr (r;N) =

br (r;N)− ργar (r;N) > 0 and ∂N/∂r < 0.
For ∂N

∂γ
= −∂G(r;N)/∂γ

G0(N) . Gγ (γ;N) = −ρa (N)− ργaγ (N), aγ (N) = 1−e−rN
rN

N
(N−γ)2 >

0. Thus, Gγ (γ;N) < 0 and ∂N/∂γ = −Gγ (γ;N
∗) /G0 (N∗) > 0.¥

Proposition 2. Proof. M0 (n) allows agents to consume exactly at the steady
state rate in the interval [0, n). This value is such that M (n) =

R n
0
P (t) c (t) dt. c (0)

is not necessarily equal to the level of consumption just after a transfer, c0. This is
only true for the agent n = 0. We know that c− (n) = c0e

−rN , for all n ∈ [0, N),
and that ċ/c = −r. Solving this differential equation yields c (x, n) = c0erne−rNe−rx,
0 ≤ x < n. Therefore, we obtain the value of M (n) solving the integral M (n) =R n
0
P0e

πtc0e
rne−rNe−rtdt.

For W0 (n). First, the value of money needed in each holding period is given by

Mj =

Z n+jN

n+(j−1)N
P (t) c0e

−r(t−Tj)dt,

j = 1, 2, ... and Tj = n+ (j − 1)N . So, Mj = P0c0e
πn 1−e−ρN

ρ
eπ(j−1)N ≡ M̄eπ(j−1)N .

The value at t = n of these transfers is AM ≡ M̄ 1
1−e−ρN . For the transfer cost, we

have TCj = γY P (n+ (j − 1)N) = P0γY eπ(n+(j−1)N), j ≥ 1. Working analogously,
ATC ≡ P0γY eπn 1

1−e−ρN . Finally, the value of W (n) is given by

W (n) = e−rnAM + e−rnATC.¥
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APPENDIX B - EQUATIONS FOR SECTION 4

The maximization problem of each agent is

max θ
∞X
j=0

Z Tj+1(1)

Tj(1)

e−ρtu (c (t, 1)) dt+ (1− θ)
∞X
j=0

Z Tj+1(2)

Tj(2)

e−ρtu (c (t, 2)) dt

subject to

X
s=1,2

" ∞X
j=1

Q (Tj (s) , s)

Z Tj+1(s)

Tj(s)

P (t, s) c (t, s) dt

+
∞X
j=1

Q (Tj (s) , s)P (Tj (s) , s) γY

#
=W0 +

X
s=1,2

Q (T1 (s) , s)K (s) ,

Z T1(s)

0

P (t, s) c (t, s) dt+K (s) =M0, s = 1, 2,

where W0 ≡ B0 +
P

s=1,2

R∞
0
Q (t, s)Y P (t, s) dt denotes deposits in the brokerage

account, and s = 1, 2 denotes the two possible states.
The first order conditions with respect to c (t) are analogous to the ones described

in appendix A. The first order conditions with respect to c (t) and Tj in the state 2
imply, for j ≥ 2,

c+ (Tj) [R (Tj)−R (Tj−1)]− γY [r (Tj)− π (Tj)] = r (Tj)

Z Tj+1

Tj

P (t) c (t)

P (Tj)
dt,

where c+ (Tj) =
£
λeρTjQ (Tj)P (Tj)

¤−1
. For T1, the first order conditions imply

c+ (T1)R (T1)− γY [r (T1)− π (T1)]− log λ
µ
+
r (T1)K

P (T1)
= r (T1)

Z T2

T1

P (t) c (t)

P (T1)
dt.

APPENDIX C - DATA

I am using a similar data set as the one used in Lucas (2000).
GDP
From 1900 to 1928 it is from the Bureau of the Census (1975), Historical Statistics

of the United States: Colonial Times to 1970. Series F1, Nominal GDP. From 1929
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to 2000 it is from NIPA, Tables 1.1.5, 1.1.6.
Interest Rate
The nominal interest rate is the short commercial paper rate. From 1900 to 1975

it is from Friedman and Schwartz (1982), Monetary trends in the United States and
the United Kingdom: their relation to income, prices and interest rates, 1875-1975,
Chicago: University of Chicago Press, Table 4.8, column 6, p. 122, “Interest Rate,
Annual Percentage, Short-Term, Commercial Paper Rate”. From 1976 to 1997 it is
from the Economic Report of the President, Table B-73 “Bond Yields and Interest
rates”. In Friedman and Schwartz, the data are for commercial paper 60 to 90 days
before 1924, and 4 to 6 months thereafter. In the Economic Report of the President,
the data are for commercial paper 4 to 6 months before 1980, and 6 months thereafter.
Money
From 1900 to 1913, it is from the Bureau of the Census (1960), Historical Statistics

of the United States: colonial times to 1957, Series X-267, “demand deposits adjusted
plus currency outside banks”. From 1914 to 1958 it is from Friedman and Schwartz
(1963), A Monetary History of the United States, 1867-1960, December of each year,
seasonally adjusted. For M1, I used column 7, sum of currency and demand deposits.
From 1959 to 1997 it is from the Federal Reserve Bank of St. Louis, FRED Database,
series M1SL, December of each year, seasonally adjusted.

APPENDIX D - ALGORITHM

The objective is to find the price path P (t) after the announcement of the interest
rate r (t) from time zero and on. The economy is initially in the steady state with
the nominal interest rate r1 equal to 3 percent per year.
We need first to describe the situation in the steady state before the shock. With

the values of r1, γ and ρ we find N in the initial steady state with proposition 1.
The values of production Y and money supply before the shock MS

0 are normalized
to 1. The price level before the shock is given by P0 = MS

0 /m, where m are real
balances. With N , we index agents by n ∈ [0, N) and find the initial values of money
that should be given to each agent in order to be in the steady state, M0 (n), by
proposition 2.
With the announcement of the new policy r (t), agents decide how much to consume

at each time c (t, n) and when to make a transfer Tj (n). For the logarithmic case,
the optimal transfer times for agent n is given by the system of equations

R (T1)− λQ (T1)
γY P (T1)

e−ρT1
[r (T1)− π (T1)]− log λ

µ (n)
+ r (T1)λ

e−R(T1)

e−ρT1
K

= r (T1)
1− e−ρN2

ρ
, (17)
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[R (Tj)−R (Tj−1)]− λQ (Tj)
γY P (Tj)

e−ρTj
[r (Tj)− π (Tj)] = r (Tj)

1− e−ρNj+1
ρ

, (18)

for j ≥ 2. If K = 0 then µ (n) = 1−e−ρT1(n)
ρM0(n)

and equation (17) simplifies to

R (T1)− e
−R(T1)

e−ρT1
γY
P (T1)

P0c0
[r (T1)− π (T1)]− log λ

µ
= r (T1)

1− e−ρN2
ρ

,

we have to check the condition µ (n) > Q (T1)λ in this case. If K > 0 then µ/λ =
Q (T1). As stated in the body of the text, the value of λ is the value before the shock,
λ = 1/ (P0c0). Given the optimal transfer times, we find optimal consumption for
agent n by

c (t) =
e−ρt

λP (t)Q (Tj)
, c+ (Tj) =

e−ρTj

λP (Tj)Q (Tj)
, c− (Tj+1) =

e−ρTj+1

λP (Tj+1)Q (Tj)
, (19)

for Tj (n) ≤ t ≤ Tj+1 (n) , j ≥ 1 and

c (t) =
e−ρt

µP (t)
, c
¡
0+
¢
=

1

µP (0+)
, c− (T1) =

e−ρT1

µP (T1)
, (20)

for 0 ≤ t ≤ T1 (n). We have Q (t) = e−R(t), R (t) =
R t
0
r (s) ds. For the permanent

shock, r (t) = r2 and R (t) = r2t. For the temporary shock, r (t) = r1 + (r2 − r1) e−ηt
and R (t) = r1t− r2−r1

η
e−ηt + r2−r1

η
.

In order to have a finite system with (18) and (17), I assume that agents choose
the new steady state interval after a long period under the new interest rate. That is,
NJ+1 = N

0 where N 0 is the steady state under the new interest rate. We have then
a system of J equations in N1, ..., NJ for each agent. We can solve this system for a
given price path P (t). In the simulations, J = 40 which implies N41 = N 0 in about
20 years after the shock.
In order to solve the system for each n, the interval [0, N) is discretized as {n1, n2,...,

nmax} where n1 = 0 and nmax is smaller than N but sufficiently close. In the simula-
tions, the number of agents is such that ni+1 − ni is equal to 0.10 day. This implies
2, 094 agents for the parameters used.
We update the price path with the market clearing condition for goods. We have

to sum consumption at time t for each agent and total resources used for transfers at
time t to find aggregate demand. In equilibrium, we have,

1

nmax

X
n

c (t, n;P ) +
1

nmax
γY ×Number of Transfers (t;P ) = Y ,

37



for each time t, where P stands for the path of the price level. The consumption
values are given by equations (19) and (20). The left-hand side of this equation is
equal to the aggregate demand and the right-hand side is equal to the aggregate
supply. The number of transfers at t is calculated summing the agents with Tj (n)
such that t ≤ Tj (n) < t+1, that is, the unit of time is one day. Several agents make
a transfer at each day. The left-hand side is divided by nmax because the density of
agents is uniform over [0, N). If demand is higher than supply at time t then increase
P (t) and recalculate the optimal transfer intervals for the new price. If demand is
lower than supply at time t, decrease P (t).
For money demand. Given the values of individual spending P (t) c (t) implied

by the first order conditions, individual money demand is M (t, n) = eR(Tj) (e−ρt −
e−ρTj+1)/ (λρ), for Tj ≤ t < Tj+1, j ≥ 1, and M (t, n) =

¡
e−ρt − e−ρT1¢ / (µ (n) ρ) for

0 ≤ t < T1. With the values of Tj, we obtain individual money demand for each
agent. We then aggregate over agents to find aggregate money demand at time t.
The program used for the code is Matlab. The initial guess for the price path is

P (t) = P0e
πt where π is inflation in the new steady state. Several other simula-

tions were performed with different numbers of intervals (different J ’s), number of
agents, transfer costs, and initial guesses for prices. These changes do not affect the
qualitative behavior of the price level or of the other equilibrium variables.

APPENDIX E - TRANSITION WITH FIXED TIME INTERVALS

This section shows the calculations for the transition with fixed time intervals in
figures (3) and (1). These calculations are done to compare to the transition in this
paper with endogenous transfer periods. The utility maximization problem is similar
to the one with endogenous transfers. The difference is that now agents optimize
within their transfer intervals but they cannot change the moments of the transfers.
Agents are indexed by n ∈ [0, N) for a fixed holding period N , equal to the value

in the initial steady state for the economy with endogenous transfers. The first
order conditions for consumption are the same as in the problem with endogenous
transfer periods. They are c (t, n) = e−ρt/ (µ (n)P (t)) for 0 < t < T1 and c (t, n) =
e−ρt/ (λQ (Tj)P (t)), for Tj < t < Tj+1. The initial money holdings are given by
proposition 2. They are such that T1 (n) = n. The initial quantity of money is
MS
0 = 1, the price level before the shock is P0 = MS

0 /m, where m is real money
demand before the shock, the interest rate before the shock is r1 = ρ. We have
λ = 1/ (P0c0). The interest rate after the shock is equal to r (t) = r2 for the permanent
shock and equal to r (t) = r1 + (r2 − r1) e−ηt for the temporary shock.
For an arbitrary t > jN , t < (j + 1)N , agents will be in their jth or (j + 1)th
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holding period, j ≥ 0. Taking this into account, aggregate consumption for t > N is

C (t) =
1

N

Z t−jN

0

e−ρt

λQ (Tj+1)P (t)
dn+

1

N

Z N

t−jN

e−ρt

λQ (Tj)P (t)
dn.

This yields

C (t) =
1

N

Z N

0

e−ρteR(t−x)

λP (t)
dx.

Analogously, for 0 ≤ t < N , aggregate consumption is

C (t) =
1

N

Z t

0

e−ρt

λQ (T1)P (t)
dn+

1

N

Z N

t

e−ρt

µ (n)P (t)
dn.

With K = 0, µ (n) = 1−e−ρT1(n)
ρM0(n)

. With the values of M0 (n) in proposition 2, µ (n) =
1

P0c0er1ne−r1N
. The condition for K = 0 is verified for the permanent and for the

temporary shocks. Therefore, aggregate consumption for 0 ≤ t < N is

C (t) =
1

N

Z t

0

e−ρteR(t−x)

λP (t)
dx+

e−ρtP0c0e−r1N

NP (t)

er1N − er1t
r1

.

The market clearing condition is given by C (t) + γY
1

N
= Y for all t ≥ 0. As

Tj (n) are fixed, there is always the same number of agents making transfers at each
time. The transfer cost γ is included in order to have results the most comparable
as possible with the model with endogenous N . It does not affect the paths in the
figures as they are shown as a percentage of the value before the shock. It does not
affect the result that real balances increases with the interest rate for a fixed N .
We can isolate the price level at each time with the market clearing condition and

the interest rate path.
For the permanent shock, we obtain

P (t) = e(r2−ρ)t
P0c0
Y

³
1− γ

N

´−1 1− e−r2N
Nr2

,

for t ≥ N and

P (t) = e(r2−ρ)t
P0c0
Y

³
1− γ

N

´−1µ1− e−r2t
Nr2

+ e−r2t
1− e−r1(N−t)

Nr1

¶
,

for 0 ≤ t < N . Note that inflation is constant for t ≥ N . An economy with fixed
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transfer intervalsN reaches the steady state in exactlyN periods after the new steady
state interest rate is set. Also, P (0) is equal to the price before the shock, P0, and
P (t) is continuous at t = N .
For the temporary shock, we obtain

P (t) =
P0c0
Y

³
1− γ

N

´−1 e r2−r1η

N

Z N

0

e−r1xe−
r2−r1

η
e−ηteηxdx,

for t ≥ N and

P (t) =
P0c0
Y

³
1− γ

N

´−1Ãe r2−r1η

N

Z t

0

e−r1xe−
r2−r1

η
e−ηteηxdx+ e−ρt

1− e−r1(N−t)
Nr1

!
,

for 0 ≤ t < N . P (t) is continuous at t = N and P (0) is equal to the price before the
shock, P0.
For the money demand, first use the first order conditions to obtain individual

spending for agent n: P (t) c (t, n) = eR(Tj)e−ρt/λ, t ∈ [Tj, Tj+1), j ≥ 1. Thus,
individual money demand at Tj ≤ t < Tj+1 is M (t, n) = eR(Tj)

R Tj+1
t

e−ρt/λdt. Anal-
ogously, individual money demand at 0 ≤ t < T1 is M (t, n) =

R Tj+1
t

e−ρt/µ (n) dt.
For t > jN , agents will be in their jth or (j + 1)th holding period, j ≥ 1. Therefore,
aggregate money demand is

M (t) =
1

N

Z t−jN

0

eR(Tj+1)
Z Tj+2

t

e−ρt

λ
dtdn+

1

N

Z N

t−jN
eR(Tj)

Z Tj+1

t

e−ρt

λ
dtdn.

As the transfer timings are fixed, Tj ≡ n+(j − 1)N . With a change of variables and
simplification, we obtain

M (t) =
1

N

Z N

0

eR(t−x)
e−ρt − e−ρ(t−x+N)

λρ
dx.

For 0 ≤ t < N , working analogously,

M (t) =
1

N

Z t

0

eR(n)

λ

e−ρt − e−ρ(n+N)
ρ

dn+
1

N

Z N

t

1

µ (n)

e−ρt − e−ρn
ρ

dn,

where µ (n) = 1/
¡
P0c0e

r1ne−r1N
¢
. Note that if r (s) = r1 we have the same steady

state formulas for the money demand.
Substituting the interest rate path and solving the integrals above, we obtain the

nominal money demands as follows.
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For the permanent shock, the nominal money demand is

M (t) =
P0c0
ρ
e(r2−ρ)t

µ
1− e−r2N
Nr2

− e−ρN 1− e
−(r2−ρ)N

N (r2 − ρ)

¶
for t ≥ N , and

M (t) =
P0c0
ρ
e(r2−ρ)t

µ
1− e−r2t
Nr2

− e−ρN 1− e
−(r2−ρ)t

N (r2 − ρ)

¶
+
P0c0
ρ

µ
e−r1t − e−r1N

Nr1
− e−ρNN − t

N

¶
for 0 ≤ t < N .
For the temporary shock, the nominal money demand is

M (t) =
e
r2−r1

η

N

P0c0
ρ

Z N

0

e−
r2−r1

η
e−ηteηx ¡e−r1x − e−ρN¢ dx

for t ≥ N , and

M (t) =
P0c0
ρ

e
r2−r1

η

N

Z t

0

e−
r2−r1

η
e−ηteηx ¡e−r1x − e−ρN¢ dx

+
P0c0
ρ

µ
e−r1t − e−r1N

Nr1
− e−ρNN − t

N

¶
for 0 ≤ t < N .
Real balances are obtained by dividing M (t) by the price level.
In the simulations, the interval between transfer is set to the value before the shock

for the economy with endogenous decisions. The economies with endogenous and
fixed transfer periods are similar in the steady state if they have the same interval
between transfer. The transition after the shock, however, is very different.
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