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Abstract
We consider private value auctions where bidders’ types are dependent, a case

usually treated by assuming affiliation. As any scientific assumption, affiliation has
limitations and it is important to know them. We show that affiliation is a restrictive
condition, that is, the set of affiliated distributions is small both in topological and
measure-theoretical senses. The economic cases where affiliation holds do not
correspond to the intuition usually given for affiliation. Affiliation’s implications
do not generalize to other definitions of positive dependence and may be frequently
false. Nevertheless, some of these implications are true in a weaker sense and there
are cases where affiliation can be well justified and used in theoretical models.
Since these cases do not cover all economically relevant cases, it is desirable to
seek a more general approach to dependence in auctions.

We propose a new approach that allow both theoretical and numerical char-
acterization of pure strategy equilibrium of first-price auctions. We treat mainly
symmetric auctions, but the approach can be extended to asymmetric auctions
with dependence. New results about equilibrium existence and revenue ranking
of auctions are provided.
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1 Introduction
Private information is a central theme in modern economics. It is often introduced in
the economic models through (privately known) random variables. For mathematical
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convenience, it is common to assume that such random variables are independent, but
this assumption is restrictive and unrealistic. It is restrictive because independence
is a “knife-edged” assumption and it is unrealistic because there are many sources of
correlation in the real world: education, culture, etc. Early recognizing these limita-
tions, economists tried to surpass the mathematical difficulties and consider some sort
of dependence in their models.

In auction theory, Wilson (1969 and 1977) was a pioneer in this task. After his
important papers, a remarkable contribution was made by Milgrom and Weber (1982a),
who introduced the concept of affiliation in auction theory.1

Affiliation is a generalization of independence — see the definition in section 3 —
that was explained through the appealing positive dependence intuition: “Roughly, this
[affiliation] means that a high value of one bidder’s estimate makes high values of the
others’ estimates more likely.” (Milgrom and Weber (1982a), p. 1096.) Among other
results implied by affiliation, Milgrom and Weber (1982a) obtained the following: (i)
affiliation ensures the existence of a symmetric monotonic (increasing) pure strategy
equilibrium (SMPSE) for first price auctions;2 (ii) under affiliation, the English and
the second price auction3 have higher expected revenue than the first price auction,
which may explain the real world fact that English auctions are more common than first
price auctions. The theoretical depth and elegance of the paper, the plausibility of the
hypothesis of affiliation, as justified by a clear economic intuition, and the explanation
of the predominance of English auctions may be considered reasons for the deep impact
of this paper. Since then, affiliation became part of the foundations of auction theory
and almost a synonymous of dependence in auctions.

After a quarter of century of intensive and successful use in auction theory, it seems
opportune to make an assessment of affiliation as assumption. How strong is it? How
robust are its implications? Do we really understand the consequences of dependence
in auctions by studying affiliation? Is affiliation the definitive answer to the problem
of dependence in auctions? The rethorical answer — this assumption is provisory
and limited as any scientific construction — is not enough. It is important to know how
severe such limitations are, because the directions of further developments may depend
on this knowledge.

In section 3 we show that affiliation is restrictive in two senses. It is restrictive in a
topological sense: the set of no affiliated probability density functions (p.d.f.’s) is open
and dense in the set of continuous p.d.f.’s. It is also restrictive in a measure-theoretic

1In two previous papers, Paul Milgrom presented results that use a particular version of the same con-
cept, under the name “monotone likelihood ratio property” (MLRP): Milgrom (1981a,b). Nevertheless, the
concept is fully developed and the term affiliation first appears in Milgrom and Weber (1982a). See also
Milgrom and Weber (1982b). When there is a density function, the property had been previously studied by
statisticians under different names. Lehmann (1966) calls it Positive Likelihood Ratio Dependence (PLRD),
Karlin (1968) calls it Total Positivity of order 2 (TP2) for the case of two variables or Multivariate Total
Positivity of Order 2 (MTP2) for the multivariate case.

2They also proved the existence of equilibrium for second price auctions with interdependent values.
In our set-up (private values), the second price auction always has an equilibrium in weakly dominant pure
strategies, which simply consists of bidding the private value. Although equilibria in mixed strategies always
exist (Jackson and Swinkels, 2005), first price auctions may fail to possess a pure strategy equilibrium when
types are dependent.

3For private value auctions, which we mainly consider in this paper, English and second price auctions
are equivalent — see Milgrom and Weber (1982a).
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sense: if µ is a probability measure over the set of joint probabilistic density functions
(p.d.f.’s), and if µ satisfies some weak conditions, then then µ puts zero measure in
the set of affiliated p.d.f.’s. In a sense, affiliation is almost as “knife-edged” as inde-
pendence. Although this observation is relevant, it is by no means definitive, since
restrictive assumptions are widespread in economics. It is more important to know
whether the assumption is reasonable in economically relevant situations and how ro-
bust its implications are.

From this, we reexamine the intuition used to introduce affiliation: the positive
dependence intuition quoted above. We show that the intuition may be misleading, as
there are many different (and weaker) definitions of positive dependence. We show
that there are some economic models where affiliation is ensured, but they do not cover
all the economically relevant cases. We also show that some of the main implications
of affiliation — equilibrium existence and the revenue ranking of auctions — do not
extend for other (still restrictive) definitions of positive dependence. From this, it seems
important to find a new method to deal with dependence in auctions.

We offer a new method, based in a simple idea. See Figure 1.
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(b) pij = f (vi, vj)

Figure 1: Discrete values, such as in (a), capture the relevant economic possibilities in a
private value model, but preclude the use of calculus. We use continuous variables, but
consider only simple density functions (constant in squares), such as in (b).

Let us expand the above explanation. Consider the setting of symmetric private
value auctions with two risk neutral players, but general dependence of types. Since
we are analyzing auctions of single objects, it would be sufficient to consider the case
where bidders’ types are distributed according to a finite number of values (the values
can be specified only up to cents and are obviously bounded). Nevertheless, to work
with discrete values precludes us from using the convenient tools of differential cal-
culus, which allow, for instance, a complete characterization of equilibrium strategies.
Maintaining the advantage of continuum variables, but without requiring unnecessary
richness in the set of distributions, we focus on the set of densities which are con-
stant in some squares around fixed values. This imposes no economic restriction on
the cases considered, but allows a complete characterization of symmetric monotonic
(increasing) pure strategy equilibrium (SMPSE) existence (see subsection 4.1).

It is easy to see that, as we take arbitrarily small squares, we can approximate any
p.d.f. (including non-continuous ones). Thus, even if the reader insists on mathematical
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generality, that is, to include other distributions, our results are still meaningful because
they cover a dense set and the equilibrium existence has some continuity properties.

For this set of simple p.d.f.’s, we are able to provide an algorithm, implementable by
a computer, that completely characterizes whether or not a pure strategy equilibrium
exists. The computer experiments (simulations) allow an exploration of facts about
auctions in general. These experiments can illuminate directions of research: after
exploring simulations and detecting a stable pattern, a theorist can try to prove that
such pattern is mandatory, that is, prove a theorem about it. We illustrate how this can
be done, by proving new results regarding pure strategy equilibrium existence.

The paper is organized as follows. Section 2 gives a brief exposition of the standard
auction model. Section 3 makes an assessment of affiliation and shows that it is impor-
tant to advance the study of dependence in auctions. Section 4 introduces the method
proposed and presents the equilibrium existence results. Section 5 deals with the prob-
lem of revenue ranking in auctions. Section 6 considers related literature and presents
concluding remarks. The more important and short proofs are given in an appendix,
while lengthy constructions are presented in a separate supplement to this paper.

2 Basic model and definitions
Our model and notations are standard. There are n bidders, i = 1, ..., n. Bidder i
receives private information ti ∈

[
t, t

]
which is the value of the object for himself.

The usual notation t = (ti, t−i) = (t1, ..., tn) ∈
[
t, t

]n
is adopted. The values are

distributed according to a p.d.f. f :
[
t, t

]n → R+ which is symmetric, that is, if
π : {1, ..., n} → {1, ..., n} is a permutation, f (t1, ..., tn) = f

(
tπ(1), ..., tπ(n)

)
.4 Let

f (x) =
∫

f (x, t−i) dt−i be a marginal of f . Our main interest is the case where f
is not the product of its marginals, that is, the case where the types are dependent.
We denote by f (t−i | ti) the conditional density f (ti, t−i) /f (ti). After knowing his
value, bidder i places a bid bi ∈ R+. He receives the object if bi > maxj 6=i bj . We
consider both first and second price auctions. As Milgrom and Weber (1982a) argue,
second price and English auctions are equivalent in the case of private values, as we
assume here. In a first price auction, if bi > maxj 6=i bj , bidder i’s utility is u (ti − bi)
and is u (0) = 0 if bi < maxj 6=i bj . In a second price auction, bidder i’s utility is
u (ti −maxj 6=i bj) if bi > maxj 6=i bj and u (0) = 0 if bi < maxj 6=i bj . For both
auctions, ties are randomly broken.

By reparametrization, we may assume, without loss of generality,
[
t, t

]
= [0, 1].

It is also useful to assume n = 2, but this is not needed for most of the results. For
most of the paper, we assume risk neutrality, that is, u (x) = x. Thus, unless otherwise
stated, the results will be presented under the following set-up:

BASIC SETUP: There are n = 2 risk neutrals bidders, that is, u (x) = x, with
private values distributed according to a symmetric density function f : [0, 1]2 → R+.

4For the reader familiar with Mertens and Zamir (1986)’s construction of universal type spaces: we make
the usual assumption in auction theory that the model is “closed” at the first level, that is, all higher level
beliefs are consistently given by (and collapse to) f .
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A pure strategy is a function b : [0, 1] → R+, which specifies the bid b (ti) for each
type ti. The interim payoff of bidder i, who bids β when his opponent j 6= i, follows
b : [0, 1] → R+ is given by

Πi (ti, β, b (·)) = u (ti − β) F
(
b−1 (β) | ti

)
= u (ti − β)

∫ b−1(β)

t

f (tj | ti) dtj ,

if it is a first price auction and

Πi (ti, β, b (·)) =
∫ b−1(β)

t

u (ti − b (tj)) f (tj | ti) dtj ,

if it is a second price auction.
We focus attention on symmetric monotonic pure strategy equilibrium (SMPSE),

which is defined as b (·) such that Πi (ti, b (ti) , b (·)) ≥ Πi (ti, β, b (·)) for all β and
ti. The usual definition requires this inequality to be true only for almost all ti. This
stronger definition creates no problem and makes some statements simpler, as those
about the differentiability and continuity of the equilibrium bidding function (other-
wise, such properties should be always qualified by the expression “almost every-
where”). Finally, under our assumptions, the second price auction always has a SMPSE
in a weakly dominant strategy, which is b (ti) = ti.

3 Affiliation and Positive Dependence
A key aspect of most auctions is that bidders’ values are private information. These
private pieces of information are usually modeled as random variables. Although it
is mathematically easier to assume that such random variables are independent, this
is unrealistic.5 Indeed, many real world institutions can act as correlation devices:
culture, education, common sources of information, evolution, etc. Thus, a deeper
understanding of auctions requires dealing with dependence of private information.

The introduction of affiliation in auction theory was a milestone in this enterprise.
Milgrom and Weber (1982a) borrowed a statistical concept (multivariate total positivity
of order 2, MTP2) and applied it to a general model of symmetric auctions. In this
fashion, they were able to prove many important results, including a revenue ranking
that is different from the provisions of the revenue equivalence theorem (Vicrkey, 1961
and Myerson, 1981). The formal definition is as follows:

Definition 1 The density function f :
[
t, t

]n → R+ is affiliated if f (t) f (t′) 6
f (t ∧ t′) f (t ∨ t′), where t∧t′ = (min {t1, t′1} , ...,min {tn, t′n}) and t∨t′ = (max{t1,
t′1}, ..., max{tn, t′n}).

5For some problems, as those considered in mechanism design, there is an economic justification for
assuming independence. As shown by Crémer and McLean (1987), dependence of types can allow full
extraction of the bidders’ surplus. This is not important for the problems that we are considering here, where
the mechanisms are fixed (first and second price auctions).
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For a quarter of a century, auction theorists used affiliation’s properties to derive
important conclusions. Affiliation’s monotonicity properties (see Theorem 5 of Mil-
grom and Weber, 1982a) combine well with natural properties of auctions, simplifying
the analysis and allowing useful predictions. In sum, affiliation provided foundation
for a successful theory, as auction theory is considered (see e.g. Maskin, 2004).

However, as any scientific acchievement, affiliation has limitations. It is impor-
tant to know what and how relevant such limitations are. The purpose of this section
is to offer an assessment of these aspects. In subsection 3.1, we show that the set of
affiliated distributions is a small subset or, in other words, affiliation is a restrictive
assumption. Although this observation is relevant, it is by no means definitive, since
restrictive assumptions are widespread in economics. It is more important to know
whether the assumption is reasonable in economically relevant situations and how ro-
bust its implications are. For this, in subsection 3.2 we review the economic intuition
used to describe affiliation and, in subsection 3.3, some cases where affiliation holds.
We review some of the affiliation’s implications in subsection 3.4. A summary of the
findings is presented in subsection 3.5.

3.1 Affiliation is restrictive
In this subsection, we show that affiliation is a restrictive assumption, that is, the set of
affiliated densities is small in the set of all densities. There are two ways to characterize
a set as small: topological and measure-theoretic. We consider both in the sequel,
beginning with the topological.

Let C denote the set of continuous density functions f : [0, 1]2 → R+ and let A be
the set of affiliated densities. For convenience and consistency with the notation in next
sections, we are including in A all affiliated densities and not only the continuous one,
which creates no problem. Endow C with the topology of the uniform convergence,
that is, the topology defined by the norm of the sup:

‖f‖ = sup
x∈[0,1]2

|f (x)| .

The following theorem shows that the set of continuous affiliated densities is small
in the topological sense.

Theorem 2 The set of continuous affiliated density functions C ∩ A is meager.6 More
precisely, the set C\A is open and dense in C.
Proof. See the appendix.

The proof of this theorem is given in the appendix, but the main idea is simple. To
prove that C\A is open, we take a p.d.f. f ∈ C\A which does not satisfy the affiliated
inequality for some points t, t′ ∈ [0, 1]2, that is, f (t) f (t′) > f (t ∧ t′) f (t ∨ t′) + η,
for some η > 0. By using such η, we can show that for a function g sufficiently close to
f , the above inequality is still valid, that is, g (t) g (t′) > g (t ∧ t′) g (t ∨ t′) and, thus,

6 A meager set (or set of first category) is the union of countably many nowhere dense sets. A set is
nowhere dense if its closure has empty interior. Thus, the theorem says more than that C ∩ A is meager:
C ∩ A is itself a nowhere dense set, by the second claim in the theorem.
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is not affiliated. To prove that C\A is dense, we choose a small neighborhood V of a
point t̂ ∈ [0, 1]2, such that for all t ∈ V , f (t) is sufficiently close to f

(
t̂
)

— this can
be done because f is continuous. Then, we perturb the function in this neighborhood
to get a failure of the affiliation inequality.

Maybe more instructive than the proof is to understand why the result is true: sim-
ply, affiliation requires an inequality to be satisfied everywhere (or almost everywhere).
This is a strong requirement and it is the source of affiliation’s restrictiveness.

Affiliation is also restrictive in the measure-theoretic sense, that is, in an informal
way, it is of “zero measure”. Obviously, we need to be careful with the formalization of
this, since we are now dealing with an infinite-dimensional set (the set of distributions
or densities). As is well known, there are no “natural” measures for infinite dimen-
sion sets, that is, measures with all of the properties of the Lebesgue measure — see
Yasamaki (1985), Theorem 5.3, p. 139.

Thus, before we formalize our results, we informally explain what we mean by
“measure-theoretic”. Let D be the set of probabilistic density functions (p.d.f.’s) f :
[0, 1]2 → R+ and assume that there is a measure µ over it. We define below a sequence
Dk of finite-dimensional subspaces of D and take the measures µk over Dk induced
by the projection of D over Dk. The result is as follows: if µk is absolutely continuous
with respect to the Lebesgue measure λk over Dk — as seems reasonable — then µ
puts zero measure on the set A of affiliated p.d.f.’s.

Remark 3 There is an alternative method of characterizing smallness in the measure-
theoretic sense: to show that the set is shy, as defined by Anderson and Zame (2001),
generalizing a definition of Christensen (1974) and Hunt, Sauer and Yorke (1992).
Stinchcombe (2000) points out some drawbacks in this approach. We discuss the char-
acterization in this approach in the supplement to this paper.

Now, we formalize our method. Endow D with the L1−norm, that is, ‖f‖1 =∫
|f (t)| dt. When there is no peril of confusion with the sup norm previously defined,

we write ‖f‖ for ‖f‖1.
For k ≥ 2, define the transformation T k : D → D by

T k (f) (x, y) = k2

∫ p
k

p−1
k

∫ m
k

m−1
k

f (α, β) dαdβ,

whenever (x, y) ∈
(

m−1
k , m

k

]
×

(
p−1

k , p
k

]
, for m, p ∈ {1, 2, ..., k}. Observe that T k (f)

is constant over each square
(

m−1
k , m

k

]
×

(
p−1

k , p
k

]
. Let Dk be the image of D by T k,

that is, Dk ≡ T k (D). Thus, T k is a projection.
Observe that Dk is a finite dimensional set. In fact, a density function f ∈ Dk can

be described by a matrix A = (aij)k×k, as follows:

f (x, y) = amp if (x, y) ∈
(

m− 1
k

,
m

k

]
×

(
p− 1

k
,
p

k

]
, (1)

for m, p ∈ {1, 2, ..., k} . The definition of f at the zero measure set of points {(x, y) =(
m
k , p

k

)
: m = 0 or p = 0} is arbitrary.

The following result is important to our method:
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Proposition 4 f is affiliated if and only if for all k, T k (f) also is. In mathematical

notation: f ∈ A⇔ T k (f) ∈ A, ∀k ∈ N, or yet: A = ∩k∈NT−k
(
A ∩Dk

)
.

Proof. See the supplement to this paper.

The set of affiliated distributionsA is the countable intersection of the sets T−k
(
A ∩Dk

)
,

and these sets themselves are small. T−k
(
A ∩Dk

)
is small in D because A ∩Dk is

small in Dk (by definition, T k is surjective). In fact, we have the following:

Proposition 5 If λk denotes the Lebesgue measure over Dk, then λk
(
A ∩Dk

)
↓ 0

as k →∞.
Proof. See the supplement to this paper.

The convergence is extremely fast, as shown in the following table, obtained by nu-
merical simulations, with 107 cases (see the supplement to this paper for the description
of the numerical simulation method and other results).

k = 3 k = 4 k = 5 k = 6

λk
(
A ∩Dk

)
1.1% ∼0.01% ∼10−6 <10−7

Table 1 - Proportion of affiliated distribution
in the sets Dk.

Now, define the measure µk overDk as follows: if E ⊂ Dk is a measurable subset,
put µk (E)= µ

(
T−k (E)

)
. Now, it is easy to obtain the main result of this subsection:

Theorem 6 If µk ≤ Mλk for some M > 0 then, µ (A) = 0.7

Proof. By Proposition 4, A ⊂ T−k
(
A ∩Dk

)
for every k. Thus,

µ (A) ≤ µ
(
T−k

(
A ∩Dk

))
= µk

(
A ∩Dk

)
≤ Mλk

(
A ∩Dk

)
.

Since λk
(
A ∩Dk

)
↓ 0 as k →∞, by Proposition 5, we have the conclusion.

As the reader may note from the above proof, it is possible to change the condition
µk ≤ Mλk for some M > 0 by µk ≤ Mkλk for a sequence Mk, as long as Mk

does not go to infinity as fast as λk
(
A ∩Dk

)
goes to zero. Since the convergence

λk
(
A ∩Dk

)
↓ 0 is extremely fast, as we noted above, this assumption seems mild.

7The reader may note that the assumption is slightly stronger than absolute continuity of µk with respect
to λk . In fact, absolute continuity requires only that λk (A) = 0 implies µk (A) = 0. Nevertheless, by
the Radon-Nikodym Theorem, absolute continuity implies the existence of a measurable function mk such
that µk (A) =

R
A mkdλk . Thus, the above assumption is really requiring this function mk to be bounded:

mk ≤ M . As we discuss in the paragraph after the Theorem, this bound does not need to be uniform in k.
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It is useful to observe that Theorem 6 is not empty, that is, there are many measures
over D that satisfy it. A way to see this is to recall that a measure over D can be
constructed from the measures over the finite-dimensional sets Dk by appealing to
the Kolmogorov Extension Theorem (see Aliprantis and Border 1991, p. 491). The
interested reader will find more comments about this in the supplement to this paper.

The results presented in this section up to now are new, but they may be non sur-
prising for some auction specialists. It seems to be known that affiliation is restrictive,
although we were unable to find references for this fact in auction theory. Nevertheless,
the following finding may be surprising even for those auction specialists: the set of
affiliated distributions is still small in the set distributions with pure strategy equilib-
rium. This fact can be seen as surprising because known cases with SMPSE are just
those with affiliation. Thus, the fact that affiliation is a small set as a subset of the set
of distributions with SMPSE is a complete novelty.

For observing this, we use Theorem 16 of section 4, which develops a method to
determine equilibrium existence through numerical simulations. That is, for each trial
f ∈ Dk, we test whether the auction with bidders’ types distributed according to f has
a SMPSE and, when it has, we test whether it is affiliated or not. The results are shown
in the Table 2 below.

Set of Distributions with SMPSE k = 3 k = 4 k = 5 k = 6 k = 7
Affiliated 7.7% 0.07% < 10−7 − −

Non-affiliated 92.3% 99.9% ∼100% 100% 100%

Table 2 - Proportion of affiliated f ∈ Dk among those f with
symmetric monotonic pure strategy equilibrium (SMPSE).

Table 2 shows that affiliation is restrictive even in the set of p.d.f.’s with SMPSE.
It is useful to record this fact separately. For this, let us introduce some useful nota-
tions. Let λ and λk denote the natural measures defined over D∞ = ∪∞k=1Dk and Dk,
respectively, as constructed in the supplement to this paper and let P and Pk denote
the set of p.d.f.’s in D∞ and Dk, respectively, which have a SMPSE. From the above
table, we extract the following:

Observation 7 Let λk
(
·|Pk

)
denote the measure induced by the Lebesgue measure

λk in the set Dk ∩ Pk. Then, we have λk
(
A ∩Dk|Pk

)
↓ 0 as k →∞.

Another way to say this is: there are many more cases with pure strategy equilib-
rium than affiliation allows us to prove. This result strengthens this subsection’s con-
clusion that affiliation is a restrictive condition. Nevertheless, this conclusion may be
not so important, if affiliation is valid in the economically relevant situations. Because
of this consideration, in the next subsection we discuss the intuition given for affilia-
tion, which describes the economically relevant cases where affiliation is supposed to
hold.
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3.2 The intuition for affiliation may be misleading
Affiliation was introduced through the positive dependence intuition: “a high value of
one bidder’s estimate makes high values of the others’ estimates more likely”, Mil-
grom and Weber (1982a, p. 1096). This intuition is very appealing, since positive
dependence is likely the most common kind of dependence in the real world. In fact,
many authors introduce affiliation through this intuition or some of its variances.

It is easy to see that affiliation captures this intuition, as we illustrate in Figure 2,
below. Affiliation requires that the product of the weights at points (x′, y′) and (x, y)
(where both values are high or both are low) be greater than the product of weights
at (x, y′) and (x′, y) (where they are high and low, alternatively). In other words, the
distribution puts more weight in the points in the diagonal than outside it.

x

f (x, y )
y

f (x′, y )

x′

f (x, y′)
y′

f (x′, y′)

Figure 2: The p.d.f. f is affiliated if x ≤ x′ and y ≤ y′ imply
f (x, y′) f (x′, y) ≤ f (x′, y′) f (x, y).

However, as long as we are interested in positive dependence, as the given intu-
ition suggests, affiliation is not the only definition available. In the statistical literature
many concepts were proposed to correspond to the notion of positive dependence. For
simplicity, let us consider only the bivariate case, and assume that the two real random
variables X and Y have joint distribution F and strictly positive density function f .
The following concepts are formalizations of the notion of positive dependence:8

Property I - X and Y are positively correlated (PC) if cov(X, Y ) > 0.

Property II - X and Y are said to be positively quadrant dependent (PQD) if
cov(g (X) , h (Y )) > 0, for all non-decreasing functions g and h.

Property III - The real random variables X and Y are said to be associated (As) if
cov(g (X, Y ) , h (X, Y )) > 0, for all non-decreasing functions g and h.

Property IV - Y is said to be left-tail decreasing in X (denoted LTD(Y |X)) if
Pr[Y 6 y|X 6 x] is non-increasing in x for all y. X and Y satisfy property IV if
LTD(Y |X) and LTD(X|Y ).

8Most of the concepts can be properly generalized to multivariate distributions. See, e.g., Lehmann
(1966) and Esary, Proschan and Walkup (1967). The hypothesis of strictly positive density function is made
only for simplicity.
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Property V - Y is said to be positively regression dependent on X (denoted PRD(Y |X))
if Pr[Y 6 y|X = x] = F (y|x) is non-increasing in x for all y. X and Y satisfy prop-
erty V if PRD(Y |X) and PRD(X|Y ).

Property VI - Y is said to be Inverse Hazard Rate Decreasing in X (denoted
IHRD(Y |X)) if F (y|x)

f(y|x) is non-increasing in x for all y, where f (y|x) is the p.d.f. of Y

conditional to X . X and Y satisfy property VI if IHRD(Y |X) and IHRD(X|Y ).

We have the following:

Theorem 8 Let affiliation be Property VII. Then, the above properties are successively
stronger, that is,

(V II) ⇒ (V I) ⇒ (V ) ⇒ (IV ) ⇒ (III) ⇒ (II) ⇒ (I),

and all implications are strict.
Proof. See the appendix.9

For this theorem, we used only seven concepts for simplicity. Yanagimoto (1972)
defines more than thirty concepts of positive dependence and, again, affiliation is the
most restrictive of all, but one.

One can say that the main contribution of this subsection is not the mathematical
result presented as Theorem 8, but the observation that: 1) positive dependence was
our primary target in the study of dependence in auctions; 2) affiliation is not positive
dependence but just one among many possible definitions — and it is, in fact, one of
the most restrictive.

This observation is important for an assessment of the assumption. If we believe
that positive dependence corresponds to the set of economically relevant cases, then
affiliation may not be the correct assumption or, in other words, the received intuition
may be misleading. Accepting the intuition, we may believe that we are covering
exactly the important cases, when we are not. The contribution here is to warn of this
potential gap.

Of course, we may think that the positive dependence cases are not, in fact, the
economically relevant ones. Instead, maybe the economically relevant cases are exactly
those where affiliation holds. Thus, we need to consider more precisely these cases.
This is the theme of the next subsection.

9Some implications of Theorem 8 are trivial and others were previously established. Our contribution
regards Property VI, that we use later to prove convenient generalizations of equilibrium existence and rev-
enue ranking results. We prove that Property VI is strictly weaker than affiliation and is sufficient for, but
not equivalent to Property V.
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3.3 In which economic models affiliation is well justified?
There are meaningful economic models where affiliation holds. The first (trivial) ex-
ample is that of independence. Although independence is a restrictive and unrealistic
assumption in general, there are economic situations where it can be considered rea-
sonable. For instance, if the knowledge of one bidder’s private value does not change
the belief about the other bidders’ values, then we have a justification for assuming
independence. In fact, it is conceivable that some situations follow this intuitive condi-
tion.

Important cases with actual dependence can be found in the conditional indepen-
dence models. These models assume that the signals of the bidders are conditionally
independent, given a variable v (which can be the intrinsic value of the object, for
instance). Some specialists seem to believe that conditional independence is a general
property (which implies no loss of generality) in symmetric models, because symmetry
(a synonymous of exchangeability) is the main assumption of De Finneti’s Theorem:

Theorem 9 (De Finneti’s Theorem) Consider a sequence of random variables X1,
X2,..., and assume that they are exchangeable, that is, assume that the distribution
of (X1, ..., Xn) is equal to the distribution of

(
Xπ(1), ..., Xπ(n)

)
, for any n and any

permutation π : N → N. Then, there is a random variable Q such that all X1, X2,...,
are conditionally independent (and identically distributed) given Q.10

Unfortunately, however, de Finneti’s theorem is not valid in standard models of
auction theory, even assuming symmetry. The reason is that standard models of auc-
tions consider a finite number of players and, hence, a finite number of private values.
De Finneti’s theorem is valid only for a sequence, that is, an infinite number of random
variables. The following example illustrates the problem:11

Example 10 Consider two random variables, X1 and X2, taking values in {0, 1},
with joint distribution given by: P (X1 = 0, X2 = 1) = P (X1 = 1, X2 = 0) = 1

2
and P (X1 = 0, X2 = 0) = P (X1 = 1, X2 = 1) =0. It is easy to see that X1

and X2 are symmetric (exchangeable). Assume that there is a variable Q such that
X1 and X2 are conditionally independent and identically distributed given Q. Let
p(Q) = Pr [Xi = 1|Q], for i = 1, 2. Thus,

0 =
∫

(p(Q))2µ(dQ) =
∫

(1− p(Q))2µ(dQ).

This implies that p(Q) = 0 µ-almost surely and p(Q) = 1 µ-almost surely. This is
obviously impossible.

10De Finneti proved this theorem for the case where the Xi are Bernoulli variables. Hewitt and Savage
(1955) extended to the general setting. The above statement is somewhat vague. A precise statement is as
follows: Let X1, X2,..., be an exchangeable sequence of random variables with values in X . Then there
exists a probability measure µ on the set of probability measures P(X ) on X such that:

P (X1 ∈ A1, ...., Xn ∈ An) =

Z
Q(A1) · · ·Q(An)µ(dQ).

11This example is adapted from Diaconis and Freedman (1980), which presents a partial generalization of
De Finneti’s theorem for a finite set of random variables.
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Thus, De Finneti’s Theorem does not imply that conditional independence is a
general condition in symmetric auctions. Of course, we may justify conditional in-
dependence by other means.12 However, even if we are ready to assume conditional
independence, some care is still necessary before getting affiliation. To see this, assume
that the p.d.f. of the signals conditional to v, f (t1, ..., tn|v), is C2 (twice continuously
differentiable) and has full support. It can be proven that the signals are affiliated if

∂2 log f (t1, ..., tn|v)
∂ti∂tj

> 0,

and

∂2 log f (t1, ..., tn|v)
∂ti∂v

> 0, (2)

for all i, j.13 It is important to note that conditional independence implies only that

∂2 log f (t1, ..., tn|v)
∂ti∂tj

= 0.

Thus, conditional independence is not sufficient for affiliation. To obtain the latter, one
needs to assume (2) or that ti and v are affiliated. In other words, to obtain affiliation
from conditional independence, one has to assume affiliation itself. Thus, conditional
independence does not give economic justification to affiliation.

The fact that we are not able to find a justification in the general model of condi-
tional independence does not imply that it does not exist, at least in special cases. In
fact, there is a particular case of this model where affiliation can be justified. Assume
that the signals ti are a common value plus an individual error, that is, ti = v + εi,
where the εi are independent and identically distributed. Now, we almost have the re-
sult that the signals t1, ..., tn are affiliated: it is still necessary to assume an additional
condition. Let g be the p.d.f. of the εi, i = 1, ..., n. Then, t1, ..., tn are affiliated if and
only if g is a strongly unimodal function.14,15

Another instance of justification of affiliation occurs when we have some reason
to believe or accept that the bidders’ values are distributed according to some specific
distribution. If such distribution has the affiliation property, then the use of affiliation
is justified by the reasons for adopting the distribution.16

Finally, it may be the case that the focus of the model are some consequences, not
the soundness of the assumptions. For instance, the economist may be interested in

12 For instance, suppose that the knowledge of some variable is sufficient for an estimation of the bidders’
values, that is, after knowing such variable, to know some bidder’s value does not change the estimation of the
other bidders’ values. In this case, we have an intuitive economic justification for conditional independence.

13See Topkis (1978), p. 310.
14The term is borrowed from Lehmann (1959). A function is strongly unimodal if log g is concave. A

proof of the affirmation can be found in Lehmann (1959), p. 509, or obtained directly from the previous
discussion.

15Even if g is strongly unimodal, so that t1, ..., tn are affiliated, it is not true in general that t1, ..., tn,
ε1, ..., εn, v are affiliated.

16This is the case, for instance, when we assume that the distributions are in some family of affiliated
copulas as do Li, Paarsch and Hubbard (2007).
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some monotone comparative statics, as Milgrom and Shannon (1994). Since affiliation
implies nice monotonicity properties, as Milgrom and Weber (1982a) show, there is an
advantaged of assuming it. In a sense, the assumption is justified by its methodological
advantages, not because it is (approximately) true. This kind of justification is, in fact,
very common. For instance, one of the best justifications for using independence is
exactly its methodological simplicity.

Yet, the inability of providing a good general economical justification for affiliation
does not necessarily implies that it is false in the real world. Only empirical tests can
assert this. Such tests are necessary, but they are amazingly absent in the empirical
literature.17

Nevertheless, even if affiliation is not valid in the real world, what is more im-
portant is its implications. As Friedman (1953) argues, the most important criterion
for judging an assumption is whether the resulting theory “yields sufficiently accurate
predictions”(p. 14). Because of this, we analyze affiliation’s implications in the next
subsection.18

3.4 Affiliation’s implications are not robut
Many results were proved using affiliation. They can be classified in two groups: facts
that are already true for the independent case (affiliation allows a generalization) and
predictions qualitatively different from the case of independence. In this subsection, we
will focus in one ele in each of these groups. The first one is the symmetric monotonic
pure strategy equilibrium (SMPSE) existence for first price auctions, generalized from
independence to affiliation. The second one is the revenue ranking of auctions: under
affiliation, the English and the second price auction give expected revenue at least as
high as the first price auction (a fact that we denote by R2 ≥ R1). This last result is in
contrast with the case of independence, where the revenue equivalence theorem implies
the equality of the expected revenues (R2 = R1).19,20 Both implications were obtained
by Milgrom and Weber (1982a) and we choose them because of their importance. The
purpose of this subsection is to verify whether these implications (SMPSE existence
and R2 ≥ R1) are true in a more general setting.

Is SMPSE existence true under other definitions of positive dependence (see sub-
section 3.2)? For private values auctions, it is not difficult to see that the same proof
from Milgrom and Weber (1982a) can be used to prove equilibrium existence for Prop-
erty VI. Indeed, as we show in Theorem 11 below, the following property is sufficient:21

Property VI′ - The joint (symmetric) distribution of X and Y satisfy property VI′

17See Laffont (1997) for a survey of empirical literature on auctions.
18The empirical literature has tested affiliation’s implication that the English auction gives higher revenue

than the first price auction, but there is no clear confirmation of this. See Laffont (1997).
19Since affiliation contains independence as a special case, the results can be qualitatively different, but

must have an overlap.
20Both the revenue ranking under affiliation and the revenue equivalence theorem requires symmetry, risk

neutrality and the same payoff by the lowest type of bidders.
21Recently, Monteiro and Moreira (2006) obtained further generalizations of equilibrium existence for

non-affiliated variables. Their results are not directly related to positive dependence properties.
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if for all x, x′ and y in [0, 1], x ≥ y ≥ x′ imply

F (y|x′)
f (y|x′)

≥ F (y|y)
f (y|y)

≥ F (y|x)
f (y|x)

.

It is easy to see that Property VI implies Property VI′ (under symmetry and full
support). Thus, the question becomes whether the generalization of SMPSE existence
is possible or not for Property V or even further.

If we define Π (x, y) = (x− b (y))F (y|x), where b (·) is a candidate for the sym-
metric equilibrium,22 then equilibrium existence is equivalent to Π (x, x) ≥ Π (x, y).
Since b (·) is monotonic, one may conjecture that the monotonicity of F (y|x) — as
Property V assumes — may be sufficient to equilibrium existence, through some sin-
gle crossing arguments (see Athey, 2001). Since property V is still a strong property
of positive dependence, this conjecture may be considered reasonable. It turns out that
this conjecture is wrong: the following theorem clarifies that SMPSE existence does
not generalize beyond Property VI.

Theorem 11 If f : [0, 1]2 → R satisfies property VI′, there is a symmetric pure strat-
egy monotonic equilibrium. Nevertheless, property V is not sufficient for equilibrium
existence.
Proof. See the appendix.

Although there were reasons to expect SMPSE existence for Property V, as we dis-
cussed above, one can rationalize the above theorem by remembering that equilibrium
existence requires the inequality Π (x, x) ≥ Π (x, y) to be satisfied in many places (for
every pair of points(x, y) ∈ [0, 1]2). Since there are many opportunities to break this
inequality, we may understand the previous theorem through the intuition that Property
V is not sufficiently strong to control this inequality everywhere. Nevertheless, the
next implication — R2 ≥ R1 — does not have this problem, because it is a compari-
son over expected values, that is, over integrals. Even if the inequality could be wrong
for some realizations, it should be true in average for the cases of positive dependence.
Thus, one could have the intuition that the revenue ranking implication should be stable
across the cases of positive dependence.

There is yet another way of reaching the same conclusion: it is the intuition for the
revenue ranking R2 ≥ R1, which is a contribution of Klemperer (2004, p. 48-9):

[In a first-price auction,] A player with value v + dv who makes the
same bid as a player with a value of v will pay the same price as a player
with a value of v when she wins, but because of affiliation she will expect
to win a bit less often [than in the case of independence]. That is, her
higher signal makes her think her competitors are also likely to have higher
signals, which is bad for her expected profits.

But things are even worse in a second-price afilliated private-values
auction for the buyer. Not only does her probability of winning diminish,

22This candidate is increasing and unique, as we show in section 4.
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as in the first-price auction, but her costs per victory are higher. This is
because affiliation implies that contingent on her winning the auction, the
higher her value the higher expected second-highest value which is the
price she has to pay. Because the person with the highest value will win
in either type of auction they are both equally efficient, and therefore the
higher consumer surplus in first-price auction implies higher seller revenue
in the second-price auction.

This intuition appeals mainly to the notion of positive dependence. Thus, the intu-
ition should lead us to believe that the revenue ranking is still valid under other defini-
tions of positive dependence. Despite these intuitive arguments, however, the following
theorem shows that the implication R2 ≥ R1 is not robust to weaker definitions of pos-
itive dependence. As before, Property V is again not sufficient for this result.

Theorem 12 If f satisfies Property VI’ (see definition above), then the second price
auction gives greater revenue than the first price auction (R2 ≥ R1). Specifically, the
revenue difference is given by∫ 1

0

∫ x

0

b
′
(y)

[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

where b (·) is the first price equilibrium bidding function, or by∫ 1

0

∫ x

0

[∫ y

0

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)
F (y|y)

]
· f (y|x) dy · f (x) dx, (3)

where L (α|t) = exp
[
−

∫ t

α
f(s|s)
F (s|s)ds

]
. Moreover, Property V is not sufficient for this

revenue ranking.
Proof. See the appendix.

The results of this subsection are essentially negative: affiliation’s implications are
not robust. Nevertheless, this conclusion can change if we accept a weaker sense for
the implications. This is to require the implications to be true not for each distribution
but just in average. That is, if we consider a natural measure over the set of distribu-
tions, then the expected value (over distributions) of the expected revenue (for a given
distribution) is bigger for second price auctions. In this weaker sense, the first implica-
tion — SMPSE existence — is still not true, but R2 ≥ R1 is. These results are reported
in sections 4 and 5.

Now, we need to summarize and discuss our findings.

3.5 Discussion about the use of affiliation in auction theory
In this section, we have shown that affiliation is restrictive, does not capture the positive
dependence cases (which implies that the given intuition may be misleading), and that
some of its implications are not robust. Nevertheless, there are some economic models
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where it can be safely assumed and some of the implications can be true in more general
cases, but in a weaker sense. How these two sides of affiliation’s assessment compare?

First, for economic situations that can be well described by the models in subsection
3.3, affiliation is justified and its implications are ensured. As long one can accept the
intuitions described there, there is absolutely no problem in doing auction theory with
affiliation, despite the observation about restrictiveness. As long as we are in a setting
in which affiliation is justified, we are free of all perils.

It is useful to illustrate the importance of this point by examining the situations
where affiliation (under different names) is used in other sciences. For instance, affili-
ation is used in statistics, as Positive Likelihood Ratio Dependence (PLRD), the name
given by Lehmann (1966) when he introduced the concept. In reliability theory, affil-
iation is generally referred to as Total Positivity of order 2 of order two (TP2) for the
case of two variables or Multivariate Total Positivity of Order 2 (MTP2) for n variables,
after Karlin (1968). MTP2 is used when the problem in study has some natural distri-
butions and these distributions satisfy the MTP2 condition. An example of this can be
seen in the historical notes of Barlow and Proschan (1965) about reability theory. It is
natural to assume that the failure rates of components or systems follow specific prob-
abilistic distributions (exponentials, for instance) and such special distributions have
the TP2 property. Thus, the corresponding theory of total positive distributions can be
advantegously used. Another example of this is the use of copulas. If we assume that
the distribution is in a family of copulas that have the MTP property, then the use of
affiliation’s properties and implications is advantageous and are justified, by the choice
of the set of distribution functions analyzed, as we discussed in subsection 3.3.23

However, we shall remember that the random variables (types) in auction theory
represent information gathered by the bidders. There are some situations where we
can assume special forms of the types’ distributions (as the cases described in subsec-
tion 3.3), but in general there is no justification for assuming specific distributions. In
fact, they are rarely assumed in the theory. Thus, there are meaningful and important
economic situations that are not covered by affiliation.

From this, we conclude the following: (1) affiliation is useful as a theoretical tool,
and can be safely assumed in some economic models; (2) there are economically rele-
vant cases where affiliation may be not valid and its implications may be not true; and,
(3) there is need for considering a more general approach to dependence in auctions.
The next section proposes an instance of such more general approach.

4 A method for dealing with the complexity of auctions
The complexity of auction models requires new tools for dealing with dependence
and asymmetry. For instance, even for single object auctions with independent types,
but asymmetric bidders, it is not possible to obtain a complete characterization of the
equilibrium strategies (see Lebrun 2006). Also under symmetry, but dependent types,
there is not a developed theory beyond affiliation. If we want to treat asymmetry and

23Li, Paarsch and Hubbard (2007) use copulas to model dependence in auction theory. They are able to
find evidence of correlation between the bids.
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general dependence, the conclusions seem to be beyond the reach of purely theoretical
results.

The problem is not restricted to the characterization of equilibria. Equilibria ex-
istence itself is yet a not completely solved problem. We know that mixed strategy
equilibria always exists, at least for private value auctions (see Jackson and Swinkels,
2005). Nevertheless, in auction theory is more common to work with pure strategy
equilibria. There is no general equilibrium existence results for auctions with depen-
dence (beyond affiliation). It is not clear whether the pure strategy equilibria are com-
mon but difficult to prove or, instead, they are rare and because of that it is impossible
to give a general existence result. We need methods to treat all of these problems.

In subsection 4.1 we argue that the auction phenomena related to dependence can
be modeled and analyzed by considering a simpler but sufficiently rich class of distri-
butions, which we introduce there. Working in this class, we are able to completely
characterize the SMPSE existence question in subsection 4.2. In this subsection, we
also show that the proportion of distributions with SMPSE is small in the set of all
densities considered.

4.1 The class of distributions
Modeling types as continuous real variables is a widespread practice in auction theory.
The reason for that is clear: continuous variables allow the use of the convenient tools
of calculus, such as derivatives and integrals, to obtain precise characterizations and
uniqueness results. This is a very important advantaged, that should not be underesti-
mated. (See Remark 17 below for a consequence of this). On the other hand, working
with a continuous of types requires to rely only on analytical arguments to establish
equilibrium results. As we show below, the set of first-price auctions with dependence
where the standard arguments are able to establish pure strategy equilibrium existence
is small in the set of all cases. Thus, continuous variables bring a benefit of characteri-
zation at the cost of loosing generality. We offer a method that has both advantages: it
gives precise characterizations and is as general as an economist needs.24 The idea is
as follows.

Observe that the value of the single object in the auction is expressed up to cents
and is obviously bounded. Thus, the number of actual possible values is finite. Never-
theless, instead of sticking to the (actual) case of discrete values, we allow them to be
continuous, but impose, on the other hand, that the density functions are simple (see
Figure 1 in the Introduction). In fact, it is sufficient to consider the particular set of
simple symmetric functions Dk, as defined in subsection 3.1. A density f in Dk can
be described by a matrix, as the figure 3 below illustrates.25

24The costs go to the complexity of the tools that are needed in the background.
25In this subsection, we will restrict our description to n = 2 players. In the case of generic n players,

the density function can be described by an array [f ] ∈ Rkn
. The reader can find details of this in the

supplement of the paper.
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Figure 3: A density f ∈ Dk can be represented by a matrix A = (aij).

The restriction to D∞ = ∪k∈NDk is a mathematical restriction that implies no
economic restriction to the problem we are studying. Note also that the closure D∞ is
the set of all densities D. Now we describe how the equilibrium existence problem can
be completely solved in the set D∞.

First, recall the standard result of auction theory on SMPSE in private value auc-
tions: if there is a differentiable symmetric increasing equilibrium, it satisfies the dif-
ferential equation (see Krishna 2002 or Menezes and Monteiro 2005):

b
′
(t) =

t− b (t)
F (t|t)

f (t|t) .

If f is Lipschitz continuous, one can use Picard’s theorem to show that this equation
has a unique solution and, under some assumptions (basically, Property VI’ of the
previous subsection), it is possible to ensure that this solution is, in fact, equilibrium.
Now, for f ∈ D∞, the right hand side of the above equation is not continuous and one
cannot directly apply Picard’s theorem. We proceed as follows.

First, we show that if there is a symmetric increasing equilibrium b, under mild
conditions (satisfied by f ∈ D∞), b is continuous. We also prove that b is differentiable
at the points where f is continuous. Thus, for f ∈ D∞, b is continuous everywhere
and differentiable everywhere but, possibly, at the points of the form m

k . See figure 4.
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Figure 4: Bidding function for f ∈ Dk.
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With the initial condition b (0) = 0 and the above differential equation being valid
for the first interval

(
0, 1

k

)
, we have uniqueness of the solution on this interval and,

thus, a unique value of b
(

1
k

)
. Since b is continuous, this value is the initial condition

for the interval
(

1
k , 2

k

)
, where we again obtain a unique solution and the uniqueness of

the value b
(

2
k

)
. Proceeding in this way, we find that there is a unique b which can be

a symmetric increasing equilibrium for an auction with f ∈ D∞. In the supplement to
this paper we prove the following:

Theorem 13 Assume that u is twice continuously differentiable, u′ > 0, f ∈ Dk,
f is symmetric and positive (f > 0). If b : [0, 1] → R is a symmetric increasing
equilibrium, then b is continuous in (0, 1) and is differentiable almost everywhere in
(0, 1) (it is may be non-differentiable only in the points m

k , for m = 1, ..., k). Moreover,
b is the unique symmetric increasing equilibrium. If u (x) = x1−c, for c ∈ [0, 1), b is
given by

b (x) = x−
∫ x

0

exp
[
− 1

1− c

∫ x

α

f (s | s)
F (s | s)

ds

]
dα. (4)

Proof. See the supplement to this paper.

Having established the uniqueness of the candidate for equilibrium, our task is
reduced to verifying whether this candidate is, indeed, an equilibrium. We complete
this task in the next subsection.

Remark 14 The benefits of chosing f ∈ D∞ are deeply related to our focus in pure
strategy equilibrium. This kind of equilibrium is the most common in auction theory.
It has an important advantage over mixed strategy equilibria: the later can be hardly
characterized, even for bimatrix games, while the former is explictly and uniquely de-
termined in general. Since we already know that mixed strategy equilibrium exist, and
little can be said beyond its existence, it seems very natural to follow the standard
practice in auction theory and restrict attention to pure strategy equilibrium, as we do.

Even if the reader insists on considering the more general set of p.d.f.’s D — being
aware that this is a matter of mathematical generality, but not of economic generality —
our set D∞ is still dense in D and, thus, may arbitrarily approximate any conceivable
p.d.f. inD. In fact, the following result shows that equilibrium existence in the setD∞
is sufficient for equilibrium existence in D. This provides an additional justification of
the method.

Proposition 15 Let f ∈ D be continuous and symmetric. If T k (f) has a differentiable
symmetric pure strategy equilibrium for all k ≥ k0, then so does f , and it is the limit
of the equilibria of T k (f) as k goes to infinity.26

Proof. See the supplement to this paper.

26See the definition of T k in subsection 3.1.
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4.2 Equilibrium existence results for 2 bidders
In the previous subsection, we established the uniqueness of the candidate for symmet-
ric increasing equilibrium for f ∈ D∞. Let b (·), given by (4) with c = 0, denote such
a candidate. Let Π (y, b (x)) = (y − b (x))F (x|y) be the interim payoff of a player
with type y who bids as type x, when the opponent follows b (·). Let ∆ (x, y) repre-
sent Π (y, b (x)) − Π (y, b (y)). It is easy to see that b (·) is equilibrium if and only if
∆ (x, y) ≤ 0 for all x and y ∈ [0, 1]2. Thus, the content of the next theorem is that it is
possible to prove equilibrium existence by checking this condition only for a finite set
of points:

Theorem 16 Consider Symmetric Risk Neutral Private Value Auction with 2 players
with f ∈ D∞ = ∪k≥1Dk. There exist an algorithm that decides in finite time if there
is or not a symmetric monotonic pure strategy equilibrium for this auction. For f ∈
Dk, the algorithm requires less than 3

(
k2 + k

)
comparisons. Errors occur only in

elementary operations as sums, multiplications, divisions, comparisons and square
and third degree roots.
Proof. See the supplement to this paper.

Remark 17 It is important to compare this result with the best algorithms for solv-
ing simpler games as bimatrix games (see Savani and von Stengel 2006). While best
known algorithms for bimatrix games requires operations that grow exponentially with
the size of the matrix, our algorithm requires operations that increases proportionately
to the size of the matrix ( k2). We do not state that the algorithm runs in polynomial
time because our problem is in continuous variables, not in discrete ones. “Polyno-
mial time” would be slightly vague here, since errors of approximations are possible.
Nevertheless, as stated, the possible errors are elementary and require a small number
of operations. This allows one to realize the important benefits of working with con-
tinuous variables but density functions in Dk, as we propose. The characterization of
the strategies obtained through differential equations allows one to drastically reduce
the computational effort, by reducing the equilibrium candidates to one. The fact that
we restrict our focus to densities inDk — an economically motivated restriction, as we
previously emphasized — allows to precisely characterize a small number of points to
be tested for the equilibrium condition. This characterization makes possible to have a
fast and precise method. The speed of the method allows auction theorists to run sim-
ulations for a big number of trials and get a good figure of what happens in general.
From this, conjectures for theoretical results can also be derived.

It is useful to say that the theorem is not trivial, since ∆ (x, y) is not monotonic in
the squares

(
m−1

k , m
k

]
×

(
p−1

k , p
k

]
. Indeed, the main part of the proof is the analysis

of the non-monotonic function ∆ (x, y) in the sets
(

m−1
k , m

k

]
×

(
p−1

k , p
k

]
and the de-

termination of its maxima for each of these sets. It turns out that we need to check a
different number of points (between 1 and 5) for some of these squares.

Using Theorem 16, we can explore the set of distributions with SMPSE and derive
observations from this. This may suggest results that can be proven. An example is the
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following: the set of p.d.f.’s with SMPSE is small. This result is proved formally in the
following:

Theorem 18 The measure of the set of densities f ∈ Dk which has SMPSE goes to
zero as k increases, that is µk

(
Pk

)
↓ 0. Consequently, the measure of the set of

densities f ∈ D∞ with SMPSE is zero, that is, µ (P) = 0.
Proof. See the supplement to this paper.

The proof of this theorem follows a simple idea: the equilibrium existence depends
on a series of inequalities, the number of which increases with k. Although some care
is needed for rigorously establishing the result, this simple observation is the heart of
the argument. This gives us the intuition that the equilibrium constraints defining equi-
librium increase faster than the degrees of freedom of the problem, when k increases.

The following table provides the numbers that come from numerical simulations
and show that the convergence of µk

(
Pk

)
to zero is also very fast.

k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
With SMPSE 43.3% 22.2% 11.4% 5.6% 2.7% 1.3% 0.6%

Without SMPSE 56.7% 77.8% 88.7% 94.4% 97.3% 98.7% 99.4%

Table 3 - Proportion of f ∈ Dk with and without SMPSE.

The result summarized in Table 3 is negative in the sense that it suggests that the
focus on symmetric monotonic equilibrium may be too narrow. Nevertheless, this is
not yet sufficient to conclude that most of the equilibria are in mixed strategies. In
fact, while we know that mixed strategy equilibria always exist (Jackson and Swinkels
2005), there is the possibility — not considered in our results — that there are equilibria
in asymmetric or non-monotonic pure strategies.

The result presented in Theorem 18 — the fact that symmetric monotonic pure
strategy equilibrium (SMPSE) existence is a restrictive property in the set of all dis-
tributions — is a novelty in auction theory. This is a negative result because auction
theory usually relies on pure strategy equilibria. Nevertheless, maybe it is not too neg-
ative, because we already know that equilibria mixed strategies exist and, maybe, they
are close and have similar properties. But this last claim is just a conjecture, with little
justification beyond the continuity properties that equilibria seem to have (see Lebrun,
2002).

4.3 Equilibrium results for n players and asymmetric auctions
The results of the previous subsection are restricted to the narrow auction setup of
symmetric risk neutral private values auctions with 2 players. In this subsection, we
show that our approach can be extended well beyond this.

Let us begin with the symmetric risk neutral private values auctions with n players.
The mathematics for treating this case is obviously more complex, but the ideas are
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essentially the same. For both cases, the equilibrium is given and it is sufficient to test
whether ∆ (x, y) = Π (x, b (y))−Π (x, b (x)) is non-positive. We can test the signal of
∆ (x, y) for (x, y) ∈

(
m−1

k , m
k

]
×

(
p−1

k , p
k

]
, for m, p ∈ {1, ..., k}. This is simplified to

check non-positive of a polynomial over [0, 1]2, even for n players. The only difference
is that for n = 2, this polynomial is of degree 3 and we can analytically solve it. For
n > 2, the polynomial has degree n + 1 and we have to rely in numerical methods for
finding roots. Thus, we have the following:

Theorem 19 Consider symmetric risk neutral private value auction with n players
with f ∈ D∞. There exist an algorithm that decides in finite time if there is or not a
symmetric monotonic pure strategy equilibrium for this auction. Errors are commited
in finding roots of polynomials of degree n + 1 and in elementary operations.
Proof. See the supplement to this paper.

Note that we did not make statements about the speed of the method. This is just
because this speed depends on the numerical method used to find roots of polynomials.
We were unable to find good characterizations of the running time of solutions to this
problem.

The method can also be applied to the general setup, that is, asymmetric interde-
pendent values auctions with n risk averse players. For this general case, there are two
important differences with respect to the previous case. With symmetry, it is possible
to know exactly what is the unique candidate for equilibrium. In the asymmetric case,
there is no explicit solution to the system of differential equations. Thus, an algorithm
for testing for equilibrium has to include the additional step of finding the solution of
the system of differential equations. The second difference is that the interdependent
values case allow different value functions vi (t), which implies that the values are
themselves arbitrary functions. In this case, the idea of using only density functions
f ∈ D∞ has to be extended also to the value functions. The idea is basically the same,
because the values are again expressed only in finite terms, but it is beyond the scope
of this paper to describe the algorithms for this case. The important point is that the
method is useful even in this more general auction setup.

5 The Revenue Ranking of Auctions
Now, we illustrate how the method described in the previous section can be used to
address the problem of revenue ranking of the first price and second price auctions. The
point of departure is that, for each p.d.f.’s f ∈ Dk, it is easy to obtain the expression of
the expected revenue difference ∆f

R ≡ Rf
2 −Rf

1 between the two auctions. In order to

make a relative comparison, we define r ≡ Rf
2−Rf

1

Rf
2

, for each f . Generating a uniform

sample of f ∈ Dk, we can obtain the probabilistic distribution of ∆f
R or of r. The

procedure to generate f ∈ Dk uniformly is described in the supplement to this paper.
The results are shown in subsection 5.1 below.

Moreover, we can also obtain theoretical results about what happens for Dk for a
large k and even for D∞ = ∪∞k=1Dk. Nevertheless, for the last case, one has to be
careful with the meaning of the “uniform” distribution. In the supplement to this paper
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we show that a natural measure can be defined forD∞, which is analogous to Lebesgue
measure, although it cannot have all the properties of the finite dimensional Lebesgue
measure.

In this fashion, we are able to obtain previsions based on simulations and also
theoretical results. One possible objection to this approach is that it considers too
equally the p.d.f.’s in the sets Dk. But this is just because we are not assuming any
specific information about the context where the auction runs — in some sense, this is
a “context-free”approach. If one has information on the environment where the auction
runs, so that one can restrict the set of suitable p.d.f.’s, then the uniform measure should
be substituted by the empirical measure obtained from this environment. Obviously,
the method can be easily adapted to this, once one has such “empirical measure” of the
possible distributions.

Now, we present the results that one can obtain using this approach.

5.1 Results on Revenue Ranking
In the supplement to this paper, we develop the expression of the revenue differences
from the second price auction to the first price auction for f ∈ Dk. Let us denote by Rf

2

the expected revenue (with respect to f ∈ Dk) of the second price auction. Similarly,
Rf

1 denotes the expected revenue (with respect to f ∈ Dk) of the first price auction.
When there is no need to emphasize the p.d.f. f ∈ Dk, we write R1 and R2 instead of
Rf

1 and Rf
2 . Below, µ refers to the natural measure defined over D∞ = ∪∞k=1Dk, as

further explained in the supplement to this paper. We observe the following fact in the
simulations made:

Observation 20 The expectation of the (expected) revenue differences, R2 − R1, is
non-negative, that is, Eµ

[
Rf

2 −Rf
1 |f ∈ Pk

]
≥ 0, where Pk denotes the set of those

f ∈ Dk for which there is a SMPSE in the first price auction.27

The simulations were made as follows. We generated the distributions f ∈ Dk as
described in the supplement to this paper. We evaluate the revenue difference percent-
age, given by:

r =
Rf

2 −Rf
1

Rf
2

· 100%,

that is, we carried out the following:

Numerical experiments
In what follows, we will treat the numerical simulations as giving an “experimental

distribution” of r. No confusion should arise between the “experimental distribution”
of r and the distributions generated by each f ∈ Dk. We generated 107 distributions
f ∈ Dk, for k = 3, ..., 9 and obtained r for each such f . The “experimental distri-
bution” of r is characterized by the table below. It is worth saying that the results are
already stable for 106 trials.

27This was verified for k ≤ 10, but seems to be valid for larger k’s.
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Distribution: k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
Expectation 4.5% 8.0% 10.3% 12.1% 13.4% 14.6% 15.5%

Variance 5.3% 6.9% 7.3% 7.2% 7.0% 6.8% 6.6%
5% quantile −4% −3% −2% 0% 1% 3% 4%
10% quantile −2% −1% 0% 2% 3% 4% 6%
25% quantile 0% 2% 4% 6% 6% 8% 8%
50% quantile 2% 6% 8% 10% 10% 12.5% 12.5%
75% quantile 6% 10% 12.5% 15% 15% 17.5% 17.5%
90% quantile 10% 15% 17.5% 17.5% 19% 19% 19%
96% quantile 12.5% 17.5% 20% 20% 20% 20% 20%
99% quantile 15% 20% 25% 25% 25% 25% 25%

Table 4 - Expectation of the relative revenue differences (r) for f ∈ Dk with SMPSE.

Figure 6 shows the “experimental density” (histogram) of r for k = 4.
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  Expectation  =  +8.0 %
  Variance  =  +6.9 %    
  0.05 quantile  =  −3 %
  0.1 quantile  =  −1 %
  0.25 quantile  =  2 %
  0.5 quantile  =  6 %
  0.75 quantile  =  10 %
  0.9 quantile  =  15 %
  0.96 quantile  =  17.5 %
  0.99 quantile  =  20 %

Figure 6: Histogram of r for k = 4, c = 0 — for those f ∈ Dk with SMPSE.

In Table 4, we displayed the results only for those f with SMPSE. If we consider
all distributions, with and without SMPSE, we obtain the results in Table 5 below. This
shows that the restriction of SMPSE existence matters for the distribution of r.
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Distribution k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
Expectation −0.08% 0.13% 0.28% 0.38% 0.46% 0.53% 0.57

Variance 10.5% 10.9% 10.5% 9.9% 9.4% 9.0% 8.5%
5% quantile −25% −20% −20% −17.5% −17.5% −15% −15%

10% quantile −15% −15% −15% −15% −12.5% −12.5% −12.5%
25% quantile −8% −8% −8% −8% −8% −8% −8%
50% quantile −1% −1% −1% −1% −1% −1% −1%
75% quantile 4% 6% 6% 6% 4% 4% 4%
90% quantile 10% 12.5% 12.5% 10% 10% 10% 10%
96% quantile 15% 15% 15% 15% 15% 15% 12.5%
99% quantile 25% 25% 25% 25% 25% 25% 25%

Table 5 - Expectation of the relative revenue differences (r) for all cases
(with and without SMPSE).

From the last two tables, one may conjecture that the positivity of the expected
revenue differences shown in Table 4 is explained, in fact, by the selection that the
SMPSE existence makes. When we do not make this selection, the expected revenue
differences are close to zero, as Table 5 shows. In other words, this suggests that
SMPSE existence is more likely in the cases when first price auctions give less revenue
than second price auctions. This observation means that maybe affiliation gives the
right intuition, but its results about revenue ranking are valid in general only in this
“weaker sense” (in average).

The following table allows one to compare the effects of dependence and risk aver-
sion to the expected revenue differences. For this, we restrict ourselves to the case of
CRRA bidders, that is, bidders with utility function u (x) = x1−c, where c ∈ [0, 1) .28

Expect. k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9
c = 0 4.6% 8.0% 10.3% 12.1% 13.4% 14.6% 15.4%

c = 0.05 3.7% 6.9% 8.8% 10.0% 10.8% 11.3% 11.6%
c = 0.1 3.0% 5.7% 7.2% 8.0% 8.4% 8.6% 8.6%
c = 0.15 2.2% 4.5% 5.7% 6.2% 6.3% 6.3% 6.3%
c = 0.2 1.4% 3.4% 4.1% 4.4% 4.4% 4.4% 4.2%
c = 0.3 0.0% 1.0% 1.2% 1.2% 1.1% 1.1% 1.0%
c = 0.4 −1.4% −1.5% −1.8% −1.8% −1.8% −1.7% −1.5%
c = 0.52 −2.9% −4.7% −5.3% −5.2% −4.9% −4.6% −4.1%
c = 0.65 −3.7% −8.8% −9.6% −9.3% −8.6% −7.9% −7.1%
c = 0.8 −6.3% −14.7% −15.9% −15.2% −14.1% −13.1% −12.1%

Table 6 - Expectation of the relative revenue differences (r) for bidders

with CRRA function u (x) = x1−c, where c ∈ [0, 1) .

28In Table 6, we restrict our study to the cases where SMPSE exists for c = 0. We did not implemented
the generalized algorithm for testing SMPSE existence with risk aversion. Thus, we were not able to test
directly SMPSE existence for c > 0. The results in Table 6 should be considered with this in mind.
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6 Related literature, the contribution and future work
A few papers have pointed out restrictions or limitations to the implications of affil-
iation. Perry and Reny (1999) presented an example of a multi-unit auction where
the linkage principle fails and the revenue ranking is reversed, even under affiliation.
Thus, their criticism seems to be restricted to the generalization of the consequences
of affiliation to multi-unit auctions. In contrast, we considered single-unit auctions and
non-affiliated distributions.

Klemperer (2003) argues that, in real auctions, affiliation is not as important as
asymmetry and collusion. He illustrates his arguments with examples of the 3G auc-
tions conducted in Europe in 2000-2001.

Nevertheless, much more was written in accordance with the conclusions of affil-
iation. McMillan (1994, p.152) says that the auction theorists working as consultants
to the FCC in spectrum auctions, advocated the adoption of an open auction using the
linkage principle (Milgrom and Weber 1982a) as an argument: “Theory says, then,
that the government can increase its revenue by publicizing any available information
that affects the licensee’s assessed value”. The disadvantages of the open format in the
presence of risk aversion and collusion were judged “to be outweighed by the bidders’
ability to learn from other bids in the auction” (p. 152). Milgrom (1989, p. 13) empha-
sizes affiliation as the explanation of the predominance of the English auction over the
first price auction.

This paper presents evidence that affiliation is a restrictive assumption. After de-
veloping an approach to test the existence of symmetric monotonic pure strategy equi-
librium (SMPSE) for simple density functions, we are able to verify that many cases
with SMPSE do not satisfy affiliation. Also, the superiority of the English auction
is not maintained even for distributions satisfying strong requirements of positive de-
pendence. Nevertheless, we show that the original conclusion of Milgrom and Weber
(1982a) (that positive dependence implies that English auctions gives higher revenue
than first price auction) is true for a much larger set of cases , but in a weaker sense —
“on average”.

We can summarize the main contributions of this paper as the following:

• affiliation is a good theoretical assumption for some cases, but there are economi-
cally relevant cases not covered by it. In this cases, affiliation’s implications may
not hold.

• It is possible to approach the problem of dependence in auctions using a special,
but sufficiently general set of density functions. Using this set, we can give a
characterization of equilibrium existence and revenue ranking that allow numer-
ical experiments and meaningful theoretical results.
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Appendix

Proof of Theorem 2
First, we prove that C\A is open. If f ∈ C\A, then f (x) f (x′) > f (x ∧ x′) f (x ∨ x′),
for some x, x′ ∈ [0, 1]n. Fix such x and x′ and define K = f (x)+f (x′)+f (x ∧ x′)+
f (x ∨ x′) > 0. Choose ε > 0 such that 2εK < f (x) f (x′) − f (x ∧ x′) f (x ∨ x′)
and let Bε (f) be the open ball with radius ε and centre in f . Thus, if g ∈ Bε (f),
‖f − g‖ < ε, which implies g (x) > f (x) − ε, g (x′) > f (x′) − ε, g (x ∧ x′) <
f (x ∧ x′) + ε, g (x ∨ x′) < f (x ∨ x′) +ε, so that

g (x) g (x′)− g (x ∧ x′) g (x ∨ x′)
> [f (x)− ε] [f (x′)− ε]− [f (x ∧ x′) + ε] [f (x ∨ x′) + ε]
= f (x) f (x′)− f (x ∧ x′) f (x ∨ x′)− ε [f (x) + f (x′) + f (x ∧ x′) + f (x ∨ x′)]
= f (x) f (x′)− f (x ∧ x′) f (x ∨ x′)− εK

> εK > 0,

which implies that Bε (f) ⊂ C\A, as we wanted to show.
Now, let us show that C\A is dense, that is, given f ∈ C and ε > 0, there exists

g ∈ Bε (f) ∩ C\A. Since f ∈ C, it is uniformly continuous (because [0, 1]n is
compact), that is, given η > 0, there exists δ > 0 such that ‖x− x′‖Rn < 2δ implies
|f (x)− f (x′)| < η. Take η = ε/4 and the corresponding δ.

Choose a ∈ (4δ, 1− 4δ) and define x (x′) by specifying that their first
⌊

n
2

⌋
co-

ordinates are equal to a − δ (a + δ) and the last ones to be equal to a + δ (a− δ).
Thus, x ∧ x′ = (a− δ, ..., a− δ) and x ∨ x′ = (a + δ, ..., a + δ). Let x0 denote the
vector (a, ..., a). For y = x, x′, x ∧ x′ or x ∨ x′, we have: |f (y)− f (x0)| < η. Let
ξ : (−1, 1)n → R be a smooth function that vanishes outside

(
− δ

2 , δ
2

)n
and equals 1

in
(
− δ

4 , δ
4

)n
. Define the function g by

g (y) = f (y) + 2ηξ (y − x) + 2ηξ (y − x′)
−2ηξ (y − x ∧ x′)− 2ηξ (y − x ∨ x′) .

Observe that ‖g − f‖ = 2η = ε/2, that is, g ∈ Bε (f). In fact, g ∈ Bε (f) ∩ C\A,
because

g (x) = f (x) + 2η > f (x0) + η;
g (x′) = f (x) + 2η > f (x0) + η;

g (x ∧ x′) = f (x ∧ x′)− 2η < f (x0)− η;
g (x ∨ x′) = f (x ∨ x′)− 2η < f (x0)− η,

which implies

g (x) g (x′)− g (x ∧ x′) g (x ∨ x′)

> [f (x0) + η]2 − [f (x0)− η]2

= 4η > 0.�
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Proof of Theorem 8.
It is obvious that (III) ⇒ (II) ⇒ (I). The implication (IV ) ⇒ (III) is Theorem
4.3. of Esary, Proschan and Walkup (1967). The implication (V ) ⇒ (IV ) is proved by
Tong (1980), chap. 5, p. 80. Thus, we have only to prove that (V I) ⇒ (V ), since the
implication (V II) ⇒ (V I) is Lemma 1 of Milgrom and Weber (1982a). Assume that
H (y|x) ≡ f(y|x)

F (y|x) is non-decreasing in x for all y. Then, H (y|x) = ∂y [lnF (y|x)]
and we have

1− ln [F (y|x)] =
∫ ∞

y

H (s|x) ds >
∫ ∞

y

H (s|x′) ds = 1− ln [F (y|x′)] ,

if x > x′. Then, ln [F (y|x)] 6 ln [F (y|x′)], which implies that F (y|x) is non-
increasing in x for all y, as required by property V .

The counterexamples for each passage are given by Tong (1980), chap. 5, except
those involving property (VI): (V ) ; (V I), (V I) ; (V II). For the first counter
example, consider the following symmetric and continuous p.d.f. defined on [0, 1]2:

f (x, y) =
d

1 + 4 (y − x)2

where d = [arctan (2)− ln (5) /4]−1 is the suitable constant for f to be a p.d.f. We
have the marginal given by

f (y) =
k

2
[arctan 2 (1− y) + arctan 2 (y)]

so that we have, for (x, y) ∈ [0, 1]2:

f (x|y) = 2
[
1 + 4 (y − x)2

]−1

[arctan 2 (1− y) + arctan 2 (y)]−1
,

F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]
arctan 2 (1− y) + arctan 2 (y)

and

F (x|y)
f (x|y)

= 2
[
1 + 4 (y − x)2

]
[arctan (2x− 2y) + arctan (2y)] .

Observe that for y′ = 0.91> y = 0.9 and x = 0.1,

F (x|y′)
f (x|y′)

= 0.366863 > 0.366686 =
F (x|y)
f (x|y)

,
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which violates property (VI). On the other hand,

∂y [F (x|y)] =
2

1+4y2 − 2
1+4(x−y)2

arctan (2− 2y) + arctan (2y)

−
[arctan (2x− 2y) + arctan (2y)]

[
2

1+4y2 − 2
1+4(1−y)2

]
[arctan (2− 2y) + arctan (2y)]2

In the considered range, the above expression is non-positive, so that property (V) is
satisfied. Then, (V ) ; (V I).

Now, fix an ε < 1/2 and consider the symmetric density function over [0, 1]2 :

f (x, y) =
{

k1, if x + y 6 2− ε
k2, otherwise

where k1 > 1 > k2 = 2
[
1− k1

(
1− ε2/2

)]
/ε2 > 0 and ε ∈ (0, 1/2) . For instance,

we could choose ε = 1/3, k1 = 19/18 and k2 = 1/18. The conditional density
function is given by

f (y|x) =


1, if x 6 1− ε

k1
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x

k2
k2(x+ε−1)+k1(2−ε−x) , otherwise

and the conditional c.d.f. is given by:

F (y|x) =


1, if x 6 1− ε

k1y
k2(x+ε−1)+k1(2−ε−x) , if x > 1− ε and if y 6 2− ε− x
k2(y+x+ε−2)+k1(2−ε−x)

k2(x+ε−1)+k1(2−ε−x) , otherwise

and

F (y|x)
f (y|x)

=

 1, if x 6 1− ε
y, if x > 1− ε and if y 6 2− ε− x
y + x + ε− 2 + k1/k2 (2− ε− x) , otherwise

Since 1 − k1/k2 < 0, the above expression is non-increasing in x for all y, so that
property (VI) is satisfied. On the other hand, it is obvious that property (VII) does not
hold:

f (0.5, 0.5) f
(
1− ε

2
, 1− ε

2

)
= k2k1 < k2

1 = f
(
0.5, 1− ε

2

)
f

(
0.5, 1− ε

2

)
.

This shows that (V I) ; (V II).�

Proof of Theorem 11
The equilibrium existence follows from Milgrom and Weber (1982a)’s proof. For the
counterexample, consider the p.d.f. defined in the proof of Theorem 8:

f (x, y) =
d

1 + 4 (y − x)2
,
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where d = [arctan (2)− ln (5) /4]−1. In the proof of Theorem 8, we established that
this p.d.f. satisfies Property V but not Property VI and that:

F (x|y) =
[arctan 2 (x− y) + arctan 2 (y)]
arctan 2 (1− y) + arctan 2 (y)

.

From Theorem 13, it is sufficient to prove that

b (y) = y −
∫ y

0

exp
[
−1

2

∫ y

z

1
arctan 2w

dw

]
dz

cannot be an equilibrium, that is, to verify the existence of x and y such that

(y − b (y))F (y|y) < (y − b (x))F (x|y) .

This simplifies to the condition:∫ y

0
exp

[
− 1

2

∫ y

z
1

arctan 2wdw
]
dz

y − x +
∫ x

0
exp

[
− 1

2

∫ x

z
1

arctan 2wdw
]
dz

<
arctan 2 (x− y)

arctan 2y
+ 1.

Let y = 0.5 and x = 1. Mathematica gives
∫ y

0
exp

[
− 1

2

∫ y

z
1

arctan 2wdw
]
dz =

0.391128 and
∫ x

0
exp

[
− 1

2

∫ x

z
1

arctan 2wdw
]
dz = 0.745072. Thus, we have:

0.391128
−0.5 + 0.745072

= 1.59597 < 2 =
arctan 2 (x− y)

arctan 2y
+ 1,

which concludes the verification for the counterexample of SMPSE existence.

Proof of Theorem 12
The dominant strategy for each bidder in the second price auction is to bid his value:
b2 (t) = t. Then, the expected payment by a bidder in the second price auction, P 2, is
given by:

P 2 =
∫
[t,t]

∫
[t,x]

yf (y|x) dy · f (x) dx =

=
∫
[t,t]

∫
[t,x]

[y − b (y)] f (y|x) dy · f (x) dx +
∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first price auctions. Thus, the
first integral can be substituted by

∫
[t,t]

∫
[t,x]

b
′
(y) F (y|y)

f(y|y) f (y|x) dy ·f (x) dx, from the

first order condition: b
′
(y) = [y − b (y)] f(y|y)

F (y|y) . The last integral can be integrated by
parts, to:
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∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx

=
∫
[t,t]

[
b (x) F (x|x)−

∫
[t,x]

b
′
(y)F (y|x) dy

]
· f (x) dx

=
∫
[t,t]

b (x) F (x|x) · f (x) dx−
∫
[t,t]

∫
[t,x]

b
′
(y) F (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first price
auction, P 1. Thus, we have

D = P 2 − P 1

=
∫
[t,t]

∫
[t,x]

b
′
(y)

F (y|y)
f (y|y)

f (y|x) dy · f (x) dx

−
∫
[t,t]

∫
[t,x]

b
′
(y) F (y|x) dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)
f (y|y)

f (y|x)− F (y|x)
]

dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

b
′
(y)

[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

Remember that b (t) =
∫
[t,t]

αdL (α|t) = t −
∫
[t,t]

L (α|t) dα, where L (α|t) =

exp
[
−

∫ t

α
f(s|s)
F (s|s)ds

]
. So, we have

b
′
(y) = 1− L (y|y)−

∫
[t,y]

∂yL (α|y) dα

=
f (y|y)
F (y|y)

∫
[t,y]

L (α|y) dα.

We conclude that

D =
∫
[t,t]

∫
[t,x]

f (y|y)
F (y|y)

∫
[t,y]

L (α|y) dα

[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

[∫
[t,y]

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)
F (y|y)

]
· f (y|x) dy · f (x) dx

This is the desired expression. For the counterexample, consider the matrix

A =

 a11 a12 a13

a21 a22 a23

a31 a32 a33

 =

 1.6938 0.3812 0.4140
0.3812 2.1318 0.5817
0.4140 0.5817 2.4206

 ,
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and define the p.d.f. as follows:

f (x, y) = amp if (x, y) ∈
(

m− 1
k

,
m

k

]
×

(
p− 1

k
,
p

k

]
,

for m, p ∈ {1, 2, 3} and k = 3. This distribution satisfies property V (but not property
VI) and has a pure strategy equilibrium. The expected revenue from a second price
auction is 0.4295, while the expected revenue of a first price auction is 0.4608, which
is nearly 7% above.

�
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