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item. Financial externalities amplify the impact of the identity-specific externalities on winning
probabilities. Third, our approach is applicable to revenue-maximizing auction design with
cross shareholding. Fourth, our finding renders an approach for revenue-maximizing auction
design with asymmetric financial externalities. Particularly, when seller does not value the
object, a revenue-maximizing auction can be obtained from any revenue-maximizing auction for
a regular setting without externalities by solely transforming the payments.
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1 Introduction

Many auctions are featured by the prevalence of allocative externalities among players (in-

cluding seller and bidders). An allocation outcome in an auction setting can be described

by the winner of the object and the payments of buyers (Myerson (1981)). Thus, allocative

externalities on any player can depend on both the identity of the winner and the buyers’

payments to allow for the most generality. The externalities are identity-specific if they

depend on only the identity of winner, while they are called financial externalities if they

are contingent only on buyers’ payments. While licensing an innovation among competi-

tors and selling nuclear weapons are employed to exemplify identity-specific externalities

(e.g.,Jehiel, Moldovanu and Stacchetti (1996)), charity auctions (e.g., Goeree, Maasland,

Onderstal and Turner (2005), Maasland and Onderstal (2007) and Engers and McManus

(2007)) and bidding rings (e.g., McAfee and McMillan (1992) and Deltas (2002)) are more

concerned with financial externalities . While these two types of externalities do not al-

ways go together, auction situations are not rare where they do. An salient example is

an auction where buyers are cross shareholders who compete for a scarce resource. Since

each buyer holds a share of other’s profits, each buyer suffers a negative financial exter-

nality that equals a share of other buyer’s payments. On top of this, each buyer enjoys

an identity-specific externality that equals a share of the winner’s added value from win-

ning the auction (Dasgupta and Tsui (2004)). Though licensing an innovation among

competitors and selling nuclear weapons are mainly used to exemplify identity-specific

externalities, these examples actually also involve financial externalities. For example,

in the North Korea’s nuclear weapon case, while the seller (North Korea) puts great

identity-specific externalities on the buyers (China, Japan, Russia, South Korea, US) if it

keeps its nuclear arsenal, some buyers may also experience financial externalities due to

the payments of buyers. Some parties (e.g., South Korea) may prefer that North Korea

raises more money to support itself in order to alleviate the burden on them to support

North Korea, while others ( e.g., US) may not like North Korea to consolidate its power

by raising a lot of money. In the technical innovation licensing example, while the winner

imposes negative identity-specific externalities on losers’ profits, the buyers could also

gain utility from other competitors’ payments, since the higher payments of other buyers

certainly decrease their resources available for other dimensions of competition, such as

advertising expenses.
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Revenue-maximizing auctions focusing on a single type of externalities have been stud-

ied by a number of papers.1 Jehiel, Moldovanu and Stacchetti (1996, 1999), Varma (2002),

and Brocas (2003, 2005) among others consider identity-specific externalities imposed

on losers by the winning buyer, while Goeree, Maasland, Onderstal and Turner (2005),

Maasland and Onderstal (2007) and Engers and McManus (2007) study the cases where

financial externalities among buyers depend on payments of themselves. The approaches

adopted for auction design with different types of externalities show little similarities and

connections, so do the derived revenue-maximizing auctions. Clearly, identity-specific and

financial externalities differ completely in nature. It remains in question whether auction

design with these two types of externalities can be unified in an integrated framework.

Furthermore, the existing insights say little on how to design revenue-maximizing auction

when both types of externalities prevail, since nothing has been revealed in the litera-

ture so far on how they might interact. In this paper, we adopt a setting where both

identity-specific and financial externalities exist and study the revenue-maximizing sell-

ing mechanism. This study illustrates that both types of externalities indeed affect the

revenue-maximizing allocation rule (the winning probabilities and payments) through the

same channel. In this sense, we provide a unified approach for obtaining the revenue-

maximizing mechanisms with pure identity-specific and/or financial externalities. More

importantly, our study further identifies the interaction between the two types of exter-

nalities in shaping the revenue-maximizing mechanism. This leads to a complete charac-

terization of the revenue-maximizing auction for the case where both types of externalities

matter.

Following Goeree, Maasland, Onderstal and Turner (2005), we begin with a setting

where financial externalities among buyers are proportional to the total payments of all

buyers. Diverging from their setting, we allow these proportions of externalities to differ

across buyers to accommodate more generality.2 While the literature largely focuses

on identity-specific externalities among buyers, in this paper we allow identity-specific

externalities among all players, including the seller and buyers. Situations abound where

the existence of identity-specific externalities between the seller and buyers is the major

1Dasgupta and Tsui (2004) is the only paper that derives the equilibrium strategy for standard auctions
with cross-shareholding. However, they have not touched the revenue-maximizing auction in this setting.

2A most general setup of financial externalities of linear form is addressed when auction with cross
shareholders is also studied in Section 5.
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concern. One recent example is the North Korea’s nuclear weapon case, where the seller

(North Korea) puts great externalities on the buyers (China, Japan, Russia, South Korea,

US) if it keeps its nuclear arsenal. Other examples where externalities exist between the

seller and buyers include selling retaliation in the WTO by a member country or selling

a soccer player by a club. We allow the bidders to be heterogeneous in both their value

distributions and identity-specific externalities that they enjoy/suffer. In particular, our

analysis does not require the identity-specific externalities to be uniformly positive or

negative.

One feature of our analysis lies in the option for the seller to physically destroy the

item. One should note that “destroying the item” differs from “not-selling”. In the

context of selling nuclear weapons, “dismantling” means “destroying” in this paper. In

previous auction design literature, destroying the auctioned item has not been formulated

as a possible outcome or as a nonparticipation threat. The significance of introducing

this option is the following. First, we can explicitly address under what conditions should

the seller destroy the object and what actions should be taken to maximize his revenue if

he destroys the object. Second, allowing this new option enlarges the freedom of auction

design with externalities. Destroying the item can be an optimal allocation outcome

for the seller or be used by the seller as an optimal nonparticipation threat, since it

eliminates the identity-specific externalities imposed on buyers. Specifically, eliminating

these identity-specific externalities has two effects. First, seller’s threat to a buyer who

refuses to participate can be made more severe. This happens when a buyer enjoys positive

identity-specific externalities whoever else keeps the object. In this case, the most severe

nonparticipation threat is to destroy the object. Second, the seller may extract higher rent

when he destroys the object if it is unsold. This can occur when the buyers suffer highly

negative identity-specific externalities when the seller keeps the item. In this situation,

the seller can be better off by committing to destroy the object and collecting a payment

from each buyer.

The revenue-maximizing selling mechanism is fully characterized in terms of the non-

participation threats, the winning probabilities, the probability of destroying the item, and

the payments of buyers. The two types of externalities interact fundamentally through

shaping players’ externality-augmented virtual values, which are obtained from the reg-
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ular virtual values by adjusting for the externalities and seller’s destroying cost.3 If only

buyer i does not participate, the item is then assigned to the one (including the seller)

generating buyer i the smallest identity-specific externality provided that this externality

is nonpositive. Otherwise the seller destroys the object. These nonparticipation threats

induce full participation of bidders. The winning probabilities are determined by the play-

ers’ augmented virtual values. Both types of externalities affect the winning probabilities

solely through the same channel of modifying players’ virtual values. The player with the

highest augmented virtual value wins given that it is positive. If no buyer wins, the seller

may keep the item or destroy it. The seller destroys the item if and only if his augmented

value is negative. A unique feature of the payment schedule is that every buyer’s payment

includes two externality-correcting components that equal the allocative identity-specific

and financial externalities, respectively.

The general findings are applied to various settings with pure identity-specific and/or

financial externalities. For symmetric settings in particular, we establish that modified

second-price and/or first-price auctions with appropriately set entry fee and reserve price

are revenue maximizing. Each buyer’s payments include an externality-correcting com-

ponent that equals the allocative externalities to him. Our study also leads to further

results on auction design for settings with pure financial externalities. Useful linkages

between revenue-maximizing auctions for settings with and without externalities are dis-

covered. In particular, for the case where the seller does not value the item,4 we establish

one-to-one correspondences between revenue-maximizing auctions with and without ex-

ternalities. We find that the revenue-maximizing auctions for a regular setting without

externalities need only be modified in the payments in order to be revenue-maximizing in

settings with financial externalities.5

The methodology developed is further applied to revenue-maximizing auction design

3Please refer to Lemma 2 for detailed definitions of players’ externality-augmented virtual values.
4This assumption is commonly adopted in the literature of auction design with financial externalities,

such as Maasland and Onderstal (2002, 2007) and Goeree, Maasland, Onderstal and Turner (2005) and
Engers and McManus (2007).

5Goeree, Maasland, Onderstal and Turner (2005) show that a lowest-price all-pay auction is revenue-
maximizing in symmetric settings of financial externalities. Applying our findings to their setting leads
to alternative revenue-maximizing first-price or second-price auctions. One advantage of the alternative
second price auction lies in that the maximal expected revenue is implemented through weakly dominant
strategy.
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with cross shareholding buyers who compete for a scarce resource. As each buyer holds

a share of other’s profits, each buyer suffers a negative financial externality that equals a

share of other buyer’s payments while enjoying an identity-specific externality that equals

a share of the winner’s added value from winning the auction (Dasgupta and Tsui (2004)).

Thus, the identity-specific externalities are perfectly correlated to the private information

of the winner. Furthermore, financial externalities in this setting takes the most general

form in the linear class. The general applicability of the methodology developed is further

evidenced through this application.

The remainder of the paper is organized as follows. Section 2 introduces the ba-

sic model with both identity-specific and financial externalities. Section 3 derives the

revenue-maximizing mechanism for this setting. Section 4 applies the general findings to

further study revenue-maximizing auctions in settings with pure identity-specific and/or

financial externalities, respectively. Section 5 derives revenue-maximizing auction with

cross shareholding buyers. Section 6 concludes.

2 The Model

2.1 Motivating Examples

Jehiel, Moldovanu and Stacchetti (1996) present an example with N firms competing in

an oligopoly. A technical innovation will be licensed to only one firm. Whoever wins the

license will increase his market share. Thus the adoption of the innovation by the winner

will increase his profit, however, it will also decrease the profit of the losers. In this sense,

the winner imposes negative identity-specific externalities on losers. If the seller is also

a competitor, his adoption of the innovation also imposes identity-specific externalities

on the buyers. We can further imagine that the buyers could gain utility from other

buyers’ payments as they are competitors, since higher payments of the competitors in the

auction certainly decrease their resources available for other dimensions of competition,

such as advertising expense. The utility component from other buyers’ payments can

thus be modeled as financial externalities. These financial externalities effect could be

very significant especially when buyers are financially constrained as the auctioned object

could be very expensive such as those spectrum auctions.

The North Korea nuclear weapon case also mimics the above situation. China, Japan,
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Russia, South Korea, US and others (such as Iran) could be considered as potential

buyers, while North Korea can be considered as the seller. Clearly, there are identity-

specific externalities among players as some may feel threatened if a particular country

holds the nuclear weapon. Moreover, one can see the existence of financial externalities for

the following arguments. Some parties (e.g., South Korea) may benefit from the money

that North Korea could raise to support itself since it can help to alleviate the burden

on them to support North Korea, while others ( e.g., US) may not like to see that North

Korea consolidates its power by raising a lot of money.

A third example where both identity-specific and financial externalities prevail emerges

simply due to cross shareholding among buyers. Consider a situation where buyers are

cross shareholders who compete for a scarce resource. Obtaining the resource increases

the value of the winner but does not affect the value of the losers. Since each buyer holds

a share of other’s profits, each buyer suffers a negative financial externality that equals

a share of other buyer’s payments. On top of this, each buyer enjoys an identity-specific

externality that equals a share of the winner’s added value due to winning the auction

(Dasgupta and Tsui (2004)). A salient feature of this example lies in that the identity-

specific externalities are rather determined by the winner’s added value that is his private

information. In this example, the identity-specific externalities are perfectly correlated to

the private information of the winner.

2.2 The Basic Setting

In this section, we first focus on a basic setting that accommodate the first two examples.

We will further study the setting of the third example with cross shareholding in Section

5. There is a seller who wants to sell one indivisible object to N potential buyers through

an auction. We use N = {1, 2, · · · , N} to denote the set of all potential buyers, where

N is public information. The seller’s value for the object is v0(≥ 0), which is public

information. Hereafter, we represent the seller as player 0 and bidder i as player i. The

ith buyer’s private value of the object is vi, which is his private information. These

values vi, i ∈ N are independently distributed on intervals [vi, vi] respectively following

cumulative distribution function Fi(·) with density function fi(·)(> 0). We assume the

regularity condition that the virtual value functions Ji(v) = v− (1−Fi(v))/fi(v) increase

on intervals [vi, vi]. The density fi(·) is assumed to be public information. The seller and
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the buyers are assumed to be risk neutral.

Player i enjoys/suffers an externality eij when player j obtains the item, i, j =

0, 1, · · · , N . By definition, eii = 0, i = 0, 1, · · · , N . These externalities are public

information.6 The auctioned item can be destroyed by the seller at a cost of c0 ≥ 0. If the

item is destroyed, no player enjoys/suffers any identity-specific externality. In addition,

there exist financial externalities among the bidders. Specifically, bidder i enjoys/suffers

an externality αi
∑

j∈N xj from every bidder’ payments xj, j ∈ N .7 We assume that

αi ∈ [0, 1), ∀i ∈ N and
∑

i∈N αi < 1.8

As a result, buyer i’s payoff is vi − xi + αi
∑

j∈N xj if he wins and pays xi; his payoff

is eij + αi
∑

j∈N xj − xi if he pays xi while another player j (seller or buyer) wins; and his

payoff is αi
∑

j∈N xj − xi if he pays xi while the item is destroyed. The seller’s payoff is

v0 +
∑

j∈N xj if he keeps the item; his payoff is e0i +
∑

j∈N xj if bidder i wins; his payoff

is
∑

j∈N xj − c0 if the item is destroyed by him.

The game extends as follows. At time 0, the proportions αi, the seller’s value v0, the

destroying cost c0, the identity-specific externalities eij and the distributions of vi, i ∈ N
are revealed by Nature as public information. Every buyer i, i ∈ N observes his private

value vi. At time 1, the seller announces the rule of the selling mechanism. The possibility

of destroying the item by the seller is allowed. We assume that the seller has the power of

committing to the proposed rule. At time 2, the buyers simultaneously and confidentially

make their participation decisions and announce their bids if they decide to participate.

At time 3, the payoffs of the seller and buyers are determined according to the announced

rule at time 1.

Externalities lead to an auction design problem in which the buyers have mechanism-

dependent reservation utilities. Jehiel and Moldovanu (1996) have pointed out that for

6Jehiel, Moldovanu and Stacchetti (1996) allow eij to be private information of player j. They however
found that this additional complication does not deliver additional insight. In Section 5, we consider a
case with cross shareholding where identity-specific externalities are private information of the party who
imposes the externalities.

7A most general setting where bidder i enjoys αijxj externalities from bidder j’s payments xj , j ∈ N
will be considered in Section 5 when revenue maximization with cross shareholders is addressed.

8Similar restrictions on the magnitude of financial externalities have been adopted by Goeree,
Maasland, Onderstal and Turner (2005), Maasland and Onderstal (2007) and Engers and McManus
(2007). This restriction guarantees the existence of revenue-maximizing mechanism. This will be clearer
when Lemma 2 is shown.
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a first price auction the best strategy of some bidders is simply not to participate to the

auction, although doing so does not avoid the negative externalities they may experience.

For this reason, we explicitly deal with the revenue-maximizing endogenous participation

and derive the revenue-maximizing mechanism while allowing endogenous entry.

Based on the “semirevelation” principle established by Stegeman (1996) that allows no

participation, we only need to consider truthful direct semirevelation mechanisms, which

require buyers to submit signals if and only if they participate, and reveal truthfully their

types if they participate. Following Stegeman (1996), we introduce a null message ∅ to

denote the signal of a nonparticipant.9 Let m = (m1, m2, · · · , mN), where mi is the signal

of buyer i and it takes values in Mi = [vi, vi] ∪ {∅}, ∀i ∈ N . Define M =
∏N

i=1 Mi. The

seller determines how to allocate the object and how much each buyer pays, using a set

of outcome functions that accommodates all participation possibilities. These outcome

functions announced by the seller consist of the probability p0(m) for the seller to keep

the item, the winning probability functions pi(m) and payment functions xi(m) of buyer

i, ∀i ∈ N . Note that 1−∑N
i=0 pi(m) is the probability of destroying the item by the seller.

This set of allocation functions is denoted by (p,x). Following Jehiel, Moldovanu and

Stacchetti (1996), we assume that the buyers who do not participate have no chance to

win the object and their payments to the seller are zero, i.e., pi(m) = 0 and xi(m) = 0

if mi = ∅, ∀i ∈ N , ∀m ∈ M.10 In addition, clearly the feasibility of mechanism (p,x)

requires
∑N

i=0 pi(m) ≤ 1, ∀m ∈ M.11

Denote by E a pure-strategy entry pattern, in which Ti ⊂ [vi, vi] is the participating

type of bidder i. We say (p,x) is a truthful direct semirevelation mechanism implementing

entry E if and only if the following conditions hold:

(a) Buyer i with private values belonging to Ti participates and reveals truthfully his

value, i.e., if he participates, he gets expected utility which is equal to or higher than his

expected utility from nonparticipation.

(b) Buyer i with private values belonging to [vi, vi]\Ti does not participates, i.e., if he

participates, he gets expected utility which is equal to or lower than his expected utility

9Unlike the revelation principle whose applicability requires full participation of buyers, the “semirev-
elation” principle accommodates all entry patterns including the full participation.

10This assumption is consistent with the no passive reassignment (NPR) assumption adopted by
Stegeman (1996).

11It deserves to be pointed out that the mechanism (p,x) includes in itself all nonparticipation threats.
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from nonparticipation.

(c) pi(m) ≥ 0, ∀0 ≤ i ≤ N , with
∑N

i=0 pi(m) ≤ 1, ∀m ∈ M.

(d) pi(m) = 0 and xi(m) = 0 if mi = ∅, ∀i ∈ N , ∀m ∈ M.

When Ti = [vi, vi], ∀i ∈ N , we have the case of full participation. Any allocation out-

come (the winning probabilities and payments) implemented by a truthful direct semi-

revelation mechanism inducing any entry E is replicable through a full-participation

truthful direct semirevelation mechanism that treats signals in [vi, vi]\Ti as null signal ∅.
We can always modify the original truthful direct revelation mechanism that implements

entry E by treating bidder i’s signal mi ∈ [vi, vi]\Ti as ∅. The modified mechanism is thus

a truthful direct revelation mechanism that induces full participation.12 Therefore, there

is no loss of generality to consider only the truthful direct semirevelation mechanisms that

induce full participation for the revenue-maximizing mechanism.

It deserves to be pointed out that in our setting with allocative externalities, the

mechanisms should accommodate the null signal ∅ even though full participation should

be induced at the optimum. In particular, introducing the null signal ∅ is necessary for

describing the nonparticipation threats.13

3 The Revenue-Maximizing Mechanism

In this section we derive the revenue-maximizing mechanism when both identity-specific

and financial externalities exist. For any truthful direct semirevelation mechanism (p,x)

implementing full participation, the seller’s expected revenue is given by:

R(p,x) = Ev

{
(v0 + e0,0)p0(v) +

N∑

i=1

e0i pi(v) − c0

(
1 −

N∑

i=0

pi(v)
)

+
N∑

i=1

xi(v)
}

= Ev

{
(v0 + c0 + e0,0)p0(v) +

N∑

i=1

(e0i + c0) pi(v) +
N∑

i=1

xi(v)
}
− c0, (1)

where v = (v1, v2, · · · , vN). The support of v is V =
∏N

i=1[vi, vi].

For buyer i with private value vi, if he submits signal mi ∈ Mi, his interim expected

payoff is given by:

Ui(vi, mi;p,x)

12Detailed proof is available from the author upon request.
13Condition (10) in Lemma 1 will further illustrate this point.
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= Ev−i

(
vi pi(mi,v−i) +

∑

j≥0

eij pj(mi,v−i) − xi(mi,v−i) + αi

∑

j∈N
xj(mi,v−i)

)
, (2)

where v−i = (v1, · · · , vi−1, vi+1, · · · , vN). The support of v−i is V−i =
∏N

j=1,j 6=i[vj, vj].

The seller’s optimization problem is to find the revenue-maximizing truthful direct

semirevelation mechanism (p∗,x∗) that implements full participation, i.e.,

max
(p,x)

R(p,x) (3)

Subject to:

(i) Ui(vi, vi;p,x) ≥ Ui(vi, ∅;p,x); ∀vi ∈ [vi, vi], ∀i ∈ N , (4)

(ii) Ui(vi, vi;p,x) ≥ Ui(vi, v
′
i;p,x); ∀vi ∈ [vi, vi], v′

i ∈ [vi, vi], ∀i ∈ N , (5)

(iii) pi(m) = xi(m) = 0 if mi = ∅, pi(m) ≥ 0 , ∀i ∈ N ,
N∑

i=0

pi(m) ≤ 1 , ∀m ∈ M. (6)

Restrictions (4)-(6) come from conditions (a)-(d) of Section 2.2.

For any direct semirevelation mechanism (p,x), we define

Qi(vi;p) = Ev−i
pi(v). (7)

If (p,x) is a truthful direct semirevelation mechanism implementing full participation,

then Qi(vi;p) is the conditional expected probability that buyer i wins the object if his

private value is vi.

Following similar procedure of Myerson (1981), we can show the following necessary

and sufficient conditions for a direct semirevelation mechanism to be a truthful one that

implements full participation.14

Lemma 1: Direct semirevelation mechanism (p,x) is a truthful direct semirevelation

mechanism that implements full participation, if and only if ∀i ∈ N the following condi-

tions and (6) hold:

Qi(si;p) ≤ Qi(vi;p), ∀vi ≤ si ≤ vi ≤ vi, (8)

Ui(vi, vi;p,x) = Ui(vi, vi;p,x) +
∫ vi

vi

Qi(si;p)dsi, ∀vi ∈ [vi, vi], (9)

Ui(vi, vi;p,x) ≥ Ui(vi, ∅;p,x). (10)

14The proof is omitted as it follows Myerson (1981) closely.
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Note that (10) differs from its counterpart in Lemma 2 of Myerson (1981). In Myerson

(1981), the utility level Ui(vi, ∅;p,x) that buyer i obtains if he does not participate is not

mechanism dependent. In particular, Ui(vi, ∅;p,x) is exogenous and fixed at zero in

Myerson (1981). However, in our setting with allocative externalities, Ui(vi, ∅;p,x) must

be determined by the mechanism adopted and thus can differ from zero.

Define γij = −αi if i 6= j and γii = 1 − αi. Define ΓN×N = (γij)i,j≥1 the payment

coefficient matrix. When
∑

i∈N αi < 1, Γ is nonsingular as |Γ| = 1 − ∑
i∈N αi > 0.

Define b = (bi)N×1 = (Γ′)−11IN×1 where all elements in 1IN×1 are 1. We thus have

bi = 1
1−
∑

j∈N αj
> 0, ∀i ∈ N .15

Before we proceed to derive the expression for the seller’s expected revenue from a

truthful direct semirevelation mechanism, we further introduce the following definitions

of generalized virtual values of players.

Definition 0: (Externality-Augmented Virtual Values) J̃i(vi) = biJi(vi)+
∑

j∈N bjeji+

e0i + c0, i ∈ N are defined as the buyers’ externality-augmented virtual value functions;

and J̃0(v0) = v0 +
∑

j∈N bjej0 + c0 is defined as the sellers’ externality-augmented virtual

value.

Note that the externality-augmented virtual values cover the virtual values coined by

Myerson (1981) as a special case, while accommodating the flexibilities of identity-specific

and financial externalities as well as costs of destroying the object. When eij = 0, c0 =

0, αij = 0, ∀i, j, the externality-augmented virtual values degenerate to the standard

case. Clearly, since Ji(·) is an increasing function, J̃i(·) must be an increasing function as

bi ≥ 0, ∀i ∈ N .

Based on Lemma 1, we can replace (4) and (5) by (8), (9) and (10) in the seller’s

optimization problem. As a result, the expected revenue of the seller from a mechanism

(p,x) satisfying conditions (4)-(6) is given in the following Lemma.

Lemma 2: For a truthful direct semirevelation mechanism (p,x) that implements full

15For a setting of financial externalities where buyer i, i ∈ N enjoys an externality that equals a
proportion (denoted by ϕi ∈ [0, 1)) of the total payments of the other buyers. We assume

∑
i∈N

ϕi

1+ϕi
< 1.

Then we have bi = 1

(1+ϕi)(1−
∑

j∈N

ϕj
1+ϕj

)
> 0. I thank sander Onderstal who pointed out that this setting

of financial externalities is isomorphic to that of Section 2.2.
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participation, the seller’s expected revenue can be written as

R(p,x) = Ev

{ N∑

i=0

pi(v)J̃i(vi)
}
−

N∑

i=1

biUi(vi, vi;p,x) − c0. (11)

Proof: See Appendix.

Lemma 2 differs from its counterpart in Myerson (1981) in the following aspects.

First, a generalized version of virtual values appears in (11); Second, due to the financial

externalities, constants bj, j ∈ N appear both in J̃i(·) and before Ui; Third, there is no

term c0 in myerson (1981). From Lemma 2, we immediately have the following revenue

equivalence theorem.

Proposition 1: The seller and bidders’ expected payoffs from a mechanism that imple-

ments full participation are completely determined by the expected payoffs of the lowest

types of vi, i ∈ N and the players’ winning probabilities for all v ∈ V.

Proof: See Appendix.

We are now ready to characterize the optimal mechanism. Before we present the

revenue-maximizing selling mechanism, we first introduce the following definitions.

Definition 1: (Nonparticipation Threats) If only buyer i, i ∈ N does not participate,

the item is assigned to the one (including the seller) who brings him the smallest identity-

specific externality provided that it is nonpositive, otherwise the seller destroys the item.

All buyers pay zero.

The nonparticipation threats of Definition 1 share the same spirit with those of Je-

hiel, Moldovanu and Stacchetti (1996). As we do not employ transfers between seller

and participating buyers to further push down the nonparticipants’ payoffs, the threats

of Definition 1 might not be the strongest possible. Clearly, variety of threats are feasi-

ble that differ in requirement for seller’s commitment power and the degree of penalty.

Nevertheless, no matter what threats are adopted, there is no loss of generality to fo-

cus on full-participation mechanism for revenue-maximizing auctions, though the optimal

revenue depends on the strongness of the threats.

The nonparticipation threats of Definition 1 can be written equivalently as follows.

∀i ∈ N , let j0 = argminj≥0,j 6=ieij. If ei,j0 ≤ 0 , then set p∗j0(mi,m−i) = 1 where mi = ∅
and m−i ∈ V−i. If ei,j0 > 0, then set p∗j(mi,m−i) = 0, ∀j ≥ 0, where mi = ∅ and

m−i ∈ V−i. In addition, ∀j ∈ N , x∗
j(mi,m−i) = 0 where mi = ∅ and m−i ∈ V−i.

12



Definition 2: (Full Participation Winning Probabilities I) If all buyers participate

and buyer i, ∀i ∈ N submits signal mi ∈ [vi, vi], the object is assigned to the player

(including the seller) whose signal renders the highest “augmented virtual value”, provided

this value is nonnegative.16 Ties are broken randomly. If this value is negative, the object

is destroyed by the seller.

The full participation winning probabilities of Definition 2 follows closely the insight

of Myerson (1981). There are two major differences. First, the virtual values adopted

in Definition 2 have been much generalized to reflect the impact of identity-specific and

financial externalities as well as costs of destroying the object on optimal auction design.

Second, the possibility of destroying the object is modeled in our analysis for the first

time in the auction design literature to our best knowledge.

The full participation winning probabilities of Definition 2 can be written equivalently

as follows. ∀m ∈ V, ∀i ∈ {0, 1, · · · , N},

p∗i (m) =





1, if J̃i(mi) > maxN
j=0 ,j 6=i J̃j (mj ) and J̃i(mi) ≥ 0 ,

0, otherwise.
(12)

Definition 3: (Full Participation Payments I) Every bidder i, i ∈ N pays an entry

fee Ei = −minj≥0 eij. In addition, the winning buyer i pays J̃−1
i (max{0, maxj 6=i J̃j(mj)});17

each losing buyer pays an externality-correcting payment (positive or negative) that equals

the allocative identity-specific externality to him.

Let x†(m) = (x†
i (m)). We thus have x†(m) is the payments functions defined following

Myerson (1981) that is incentive compatible with the winning probabilities (12) while

ignoring the financial externalities. The full participation payments of Definition 3 can

be written equivalently as follows. ∀m ∈ V, ∀i ∈ N ,

x†
i (m) =





J̃−1
i (max{0, maxN

j=0,j 6=i J̃j(mj)}) + Ei, if i wins,

eij + Ei, if j (≥ 0 ) wins, where j 6= i ,

Ei, if the object is destroyed .

(13)

Payments x†(m) have accommodated the impact of identity-specific externalities on

revenue-maximizing auction. To incorporate the impact of financial externalities, we have

to modify x†(m) and define the following set of payment functions x∗(m) = (x∗
i (m)).

16We treat the seller’s signal as v0.
17We use J̃−1

i (·) to denote the inverse function of J̃i(·), i ∈ N . If x < J̃i(vi), J̃−1
i (x) is defined as vi;

if x > J̃i(vi), J̃−1
i (x) is defined as vi.
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Definition 4: (Full Participation Payments II) x∗(m) = Γ−1 · x†(m), i.e., ∀m ∈
V, ∀i ∈ N ,

x∗
i (m) = x†

i (m) +
αi

1 −∑N
j=1 αj

N∑

j=1

x†
j(m). (14)

As x∗(m) = Γ−1 · x†(m), we have x†(m) = Γ · x∗(m). Based on Lemma 2 and the

above definitions, we are then able to present the revenue-maximizing mechanism as in

the following proposition.

Proposition 2: The nonparticipation threats of Definition 1, the full participation win-

ning probabilities and payments of Definitions 2 and 4 constitute a revenue-maximizing

truthful direct semirevelation mechanism. The mechanism implements full participation

of bidders. The expected payoff of bidder i of type vi is minj≥0 eij, which is nonpositive.

Proof: See Appendix.

According to Proposition 2, the two types of externalities interact fundamentally

through shaping players’ augmented virtual values, which completely determine the win-

ning probabilities. Both types of externalities affect the winning probabilities solely

through this channel of modifying players’ virtual values. From the definitions of the

augmented virtual values in Lemma 2, we see that the existence of the financial exter-

nality amplifies the impact of the players’ values and the identity-specific externalities on

the winning probabilities.

From Definition 4, we see a unique feature of the payment schedule. Every buyer’s

payments include externality-correcting components that equal the allocative identity-

specific externalities (eij if player j wins, zero otherwise) and financial externalities

(αi
∑N

j=1 x∗
j(m)), respectively. This is clear as x∗

i (m) = x†
i (m) + αi

∑N
j=1 x∗

j(m).

Proposition 2 answers the questions of when the object is destroyed by the seller

and how the seller should proceed to maximize his expected revenue if the item is to be

destroyed. From Proposition 2, we have the following results regarding the probability of

destroying the object.

Corollary 1: If J̃0(v0) ≥ 0, the object is never destroyed by the seller. If instead J̃0(v0) <

0, the object is destroyed by the seller with probability
∏N

i=1 Fi(J
−1
i (−∑j∈N eji − (1 −

∑
j∈N αj)(e0i + c0))).

18

18We use J−1
i (·) to denote the inverse function of Ji(·). If x < vi − 1

fi(vi
) , J−1

i (x) is defined as vi; if
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From Corollary 1, we see a necessary condition for the seller to destroy the item is that
∑

j≥0 ej0 < 0, i.e., the total identity-specific externalities on the bidders if the seller keeps

the item is negative. Another observation is that the existence of financial externalities

can be a force that contributes to destroying the item by the seller. This happens when

v0 +
∑

j≥0 ej0 + c0 ≥ 0, but v0 +

∑
j≥0

ej0

1−
∑

j∈N αj
+ c0 < 0.

We use (p0,x0) to denote the revenue-maximizing mechanism when the identity-

specific externalities are e0
ij, i, j ∈ {0, 1, · · · , N}. When e0

i0, ∀i ∈ N are negative enough,

we have minj≥0 e0
ij = e0

i0, ∀i ∈ N . Thus Ui(vi, vi;p
0,x0) = e0

i0, ∀i ∈ N from Proposition

2. From (11), the optimal expected revenue is

R(p0,x0) = −c0 −
1

1 −∑
j∈N αj

∑

j≥0

e0
j0 +

∫

V

{
p0

0(v)(v0 + c0 +

∑
j≥0 e0

j0

1 −∑
j∈N αj

)

+
N∑

i=1

p0
i (v)(

Ji(vi) +
∑

j∈N e0
ji

1 −∑
j∈N αj

+ e0
0i + c0)

}
f(v)dv.

Let R′(p0,x0) denote the value of the right-hand-side of R(p0,x0) when e0
i0 decreases to

e′i0, i ∈ N . Clearly R′(p0,x0) ≥ R(p0,x0) as p0
0(v) ∈ [0, 1]. Suppose when e0

i0 decreases to

e′i0, i ∈ N , the corresponding revenue-maximizing auction rule changes to (p′,x′). Denote

the optimal expected revenue by R′(p′,x′) when externalities are e′i0, i ∈ N . We must

have R′(p′,x′) ≥ R′(p0,x0). Therefore, R′(p′,x′) ≥ R(p0,x0), i.e., the seller’s optimal

expected revenue increase as externalities e0
i0, i ∈ N decrease. This helps to explain why

North Korea tries to convince the relevant countries that it owns very powerful nuclear

weapons. This result holds whether or not financial externalities exist.

So far, we have focused on financial externalities where all bidders’ payments carry

symmetric weights. Maasland and Onderstal (2002, 2007) and Engers and McManus

(2007) rather allow other bidders’ payment have different impact than that of own pay-

ments. These cases can be similarly analyzed. We will consider the most general form of

linear financial externalities in Section 5.

x > vi, J−1
i (x) is defined as vi.
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4 Applications to One Type of Externalities

Clearly, Proposition 2 applies to setting with one type of externalities. Revenue-maximizing

auctions with a single type of externalities have been well studied. In the case of pure

identity-specific externalities, Jehiel, Moldovanu and Stacchetti (1996) has fully derived

the winning probabilities, though the payments schedule has not been fully characterized.

In the case of pure financial externalities, the literature (Maasland and Onderstal (2002,

2007) and Goeree, Maasland, Onderstal and Turner (2005) and Engers and McManus

(2007)) so far has rather focused on symmetric bidders. In this section, we apply Propo-

sition 2 and further present some more complete characterizations on revenue-maximizing

auctions for settings with one type of externalities.

4.1 The Case of Pure Identity-Specific Externalities

4.1.1 The General Setting

We first consider a general setting with pure identity-specific externalities, which allows

asymmetry across bidders. In other words, we consider the case where αi = 0, ∀i ∈ N in

the setting of Section 2.2. In this case, we have J̃i(vi) = Ji(vi) +
∑

j≥0 eji + c0, i ∈ N and

J̃0(v0) = v0 +
∑

j≥0 ej0 + c0. Applying Proposition 2 leads to the following result.

Corollary 2: The nonparticipation threats of Definition 1, the full participation winning

probabilities and payments of Definitions 2 and 3, where J̃i(vi) = Ji(vi) +
∑

j≥0 eji +

c0, i ∈ N and J̃0(v0) = v0 +
∑

j≥0 ej0 + c0, constitute a revenue-maximizing truthful direct

semirevelation mechanism.

4.1.2 Symmetric Setting

We now show that the revenue-maximizing mechanism of Corollary 2 reduces to a mod-

ified second price auction in a symmetric setting. In this symmetric setting, Fi(·) =

F (·), fi(·) = f(·) on support [v, v], ∀i ∈ N . In addition, ei0 = e10, e0i = e01, eij =

e, ∀i, j ∈ N and i 6= j. As usual, we assume the regularity condition that J(v) = v− 1−F (v)
f(v)

is an increasing function. The augmented virtual value function of a representative buyer

is defined as J̃(·) = J(·)+ c0 +
∑

j≥0 ej1. The inverse function of J̃(·) is denoted by J̃−1(·).
The seller’s augmented value is J̃0(v0) = v0 +

∑
j≥0 ej0 + c0.
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Based on (12) and (13), ∀m ∈ V, the full participation winning probability of buyer

i, ∀i ∈ N is written as

ps∗
i (m) =





1 if mi ≥ zi(m−i),

0 if mi < zi(m−i),
(15)

and his full participation payment is written as

xs†
i (m) =





zi(m−i) + E, if i wins,

e + E, if j (≥ 0 ) wins, , where j 6= i ,

E, if the object is destroyed ,

(16)

where zi(m−i) = max{maxj 6=i,j∈N mj, J̃
−1(max{0, J̃0(v0)})} and E = −minj≥0 e1j. In

addition, the seller keeps the object with probability of

ps∗
0 (m) =





1, if J̃0 (v0 ) > J̃ (maxN
j=1 mj ) and J̃0 (v0 ) ≥ 0 ,

0, otherwise.
(17)

(16) means that every buyer pays an entry fee of E = −minj≥0 e1j. Moreover, if

buyer i wins, he pays an additional zi(m−i). If he loses, he pays an externality-correcting

payment that equals the identity-specific externality he enjoys or suffers. From (17), it

is optimal for the seller to destroy the unsold object if and only if J̃0(v0) < 0, i.e., the

sum of the seller’s value, the destroying cost of the seller and the total externalities to the

buyers is negative when the seller keeps the item. When J̃0(v0) < 0, the seller is better

off by committing to destroy the object (eliminating the externalities) and collecting a

payment from each buyer that equals the externality to him.

Note that the nonparticipation threats (Definition 1) and (15)-(17) constitute a truth-

ful direct semirevelation mechanism that induces full participation. Clearly, this mecha-

nism is equivalent to the following modified second price auction.

Definition 5: (Auction A0) Every bidder pays an entry fee E = −minj≥0 e1j. The

highest buyer wins if his bid is higher than the reserve price J̃−1(max{0, J̃0(v0)}). If no

buyer bids higher than the reserve price, then the seller destroys the item if and only if

J̃0(v0) < 0. The winning bidder pays the second highest bid or the reserve price, whichever

is higher. Every losing buyer pays an externality-correcting payment that equals the al-

locative identity-specific externality to him.
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Based on the above results, we have the following proposition that describes the

revenue-maximizing auction.

Proposition 3: In a symmetric setting with pure identity-specific externalities, the mod-

ified second-price sealed-bid auction A0 of Definition 5 together with the nonparticipation

threats of Definition 1 is revenue-maximizing.

Each buyer’s payment is adjusted by the amount of allocative externality to him,

while he suffers or enjoys this externality at the same time. This creates a situation

where buyers bid as if there is no externality on them. Based on similar arguments for

the standard second-price auction, bidding his true value is a weakly dominant strategy

for every buyer in the second price auction A0. This is why a modified second-price

auction with the externality-correcting payments is revenue-maximizing, provided that

the reserve price and entry fee are properly set. In auction A0, the entry fee is set at the

highest possible level which can be supported by the nonparticipation threats, and the

optimal reserve price is determined by the seller’s augmented value J̃0(v0).

Define B0 as a modified first-price auction, which differs from A0 only in terms of

the payments of the winning bidder, i.e., the winning bidder pays his own bid or the

reserve price J̃−1(max{0, J̃0(v0)}), whichever is higher. Based on Proposition 3 and the

revenue equivalence theorem of Proposition 1, we have that auction B0 with the threats

of Definition 1 is also revenue-maximizing.

4.2 The Case of Pure Financial Externalities

In this section, we conduct further studies on revenue-maximizing auctions for settings

with pure financial externalities. Useful linkages between revenue-maximizing auctions

for settings with and without externalities are established based on the insights of Section

3. Specifically, when seller does not value the item, we will establish one-to-one corre-

spondences between revenue-maximizing auctions with and without financial externalities.

Therefore, revenue-maximizing auctions for various settings of financial externalities can

be obtained through transforming the revenue-maximizing second-price and/or first-price

auctions for regular settings without externalities. In this sense, our findings provide a

general approach for deriving the revenue-maximizing auctions in a variety of settings

with financial externalities.
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4.2.1 General Settings

So far the literature on auction with financial externalities has focused on symmetric

settings. Proposition 2 rather applies to general settings allowing asymmetry among

bidders. We first apply Proposition 2 and present the revenue-maximizing mechanism for

a general setting. We consider the case where eij = 0, ∀0 ≤ i, j ≤ N in the settings of

Section 2.2. The augmented virtual values of the players can be simplified as J i(vi) =
Ji(vi)

d
+ c0, i ∈ N and J0(v0) = v0 + c0, where d = 1 − ∑

j∈N αj. Note that d = 1

corresponds to the case of no externalities. The inverse function of J i(·) is denoted by

J
−1
i (·). In this case, the nonparticipation threats of Definition 1 take the following form

in this setting.

Definition 1′: (Nonparticipation Threats) If at least one bidder does not participate,

the seller keeps the item by himself, all participating bidders pay zero.

Following Definitions 2-4, we introduce the following full participation winning prob-

ability and payment functions.

∀m ∈ V, ∀i ∈ {0, 1, · · · , N},

p∗i (m) =





1, if J i(mi) > maxN
j=0 ,j 6=i J j (mj ) and J i(mi) ≥ 0 ,

0, otherwise,
(18)

and ∀i ∈ N ,

x†
i(m) =





J
−1
i (maxN

j=0,j 6=i J j(mj)), if i wins,

0, Otherwise.
(19)

Let x†(m)N×1 = (x†
i (m)). We next define another set of full participation payments

functions x∗(m)N×1 = (x∗
i (m)):

x∗(m) = Γ−1 · x†(m). (20)

According to Propositions 2, we have the following result.

Corollary 3: The nonparticipation threats of Definition 1′, full participation winning

probabilities (18) and payments (20) constitute a revenue-maximizing truthful direct semi-

revelation mechanism.

According to (18), if v0 > 0, then higher externalities (lower d ∈ (0, 1]) lead to higher

winning probabilities for all buyers and lower probability for the seller to keep the item.
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Note that the item is never destroyed as J0(v0) ≥ 0 in this case. Clearly, when d = 1,

(18) and (19) give a revenue-maximizing truthful direct semirevelation mechanism in a

setting without externalities.

4.2.2 When Seller Does Not Value the Object

The assumption of v0 = 0 has been commonly adopted in the literature of auction design

with financial externalities, such as Maasland and Onderstal (2002, 2007) and Goeree,

Maasland, Onderstal and Turner (2005) and Engers and McManus (2007).

When v0 = 0, neither (18) or (19) depends on d ∈ [0, 1). Therefore, we can replace

the J i(·) in (18) and (19) by Ji(·) and Corollary 3 still holds. In addition, according to

Myerson (1981), (18) and (19) with J i(·) replaced by Ji(·) constitute a revenue-maximizing

mechanism without financial externalities.19 Based on these observations, the relation

between the seller’s optimal expected revenue with and without financial externalities is

discovered as in the next proposition.

Proposition 4: Suppose v0 = 0. The seller’s optimal expected revenue with financial

externalities equals 1
d

times of that without externalities. Thus, seller’s optimal expected

revenue increases with the financial externalities among the buyers.

Proof: See Appendix.

Based on the above discussions, the revenue-maximizing mechanisms for the cases with

and without externalities can be obtained from each other solely through transforming

the payment functions. In the next proposition, we show that this statement holds in a

context of general mechanisms.

Proposition 5: There exists a one-to-one correspondence between revenue-maximizing

mechanisms with and without financial externalities. Every mechanism can be obtained

from its counterpart solely through transforming the payment functions using matrix Γ.

Specifically, x̃ = Γ−1x where x̃ is the payment functions for the setting with externalities

and x is the payments for the setting without externalities.

Proof: See Appendix.

Thus, a useful connection between the revenue-maximizing mechanisms with and with-

out financial externalities is disclosed. This result thus provides a general approach for

revenue-maximizing auction design with financial externalities when v0 = 0. Provided

19This result is also implied by Corollary 3 with d = 1.
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that we know a revenue-maximizing mechanism without externalities and the specific

form of financial externalities (i.e., we know Γ), then a revenue-maximizing mechanism

with financial externalities can simply be obtained through transforming the payment

functions appropriately by adding a term that adjusts for the financial externalities.

Next, we present some further results on auction design with financial externalities.

To begin, we have the following result from Proposition 5.

Corollary 4: Seller’s optimal expected revenue does not depend on the distribution of the

externalities across the buyers. In other words, only the sum of all αi counts.

In addition, when v0 = 0, the Corollary 3 revenue-maximizing mechanism can be

implemented through the following auction.

(a.1) There is no entry fee, the reserve price for buyer i, ∀i ∈ N is v̂i (≥ vi), which is

the unique solution of Ji(v̂i) = 0;

(a.2) If at least one buyer does not participate, the seller keeps the item, no bidder pays;

(a.3) If all participate, we denote buyer i’s bid by bi, ∀i ∈ N . Buyer i wins if Ji(bi) is the

highest among all Jj(bj), ∀j ∈ N and bi ≥ v̂i. Ties are broken randomly. Suppose buyer

i, ∀i ∈ N is the winner. The payments are the following. First, buyer i pays z1, which is

J−1
i (maxN

j=1,j 6=i Jj(bj)) or the reserve price v̂i (≥ vi), whichever is higher. Second, every

buyer j ∈ N pays z2 = αjz1

1−
∑N

i=1
αi

. If no bidder wins, the seller keeps the item, and no one

pays.

This result can also be derived from Proposition 5. From Myerson (1981), we have

that in the setting without externalities, the auction defined in (a.1) to (a.3) with z2 = 0

is revenue-maximizing. It follows from Proposition 5 that the mechanism defined in (a.1)

to (a.3) is revenue-maximizing with financial externalities.

Goeree, Maasland, Onderstal and Turner (2005) study a symmetric independent

private value setting where buyers’ values follow cumulative distribution function F (·)
on [v, v] and the seller’s value is zero. They assume that each buyer enjoys a positive

externality which equals a common proportion (denoted by α < 1
N

where N is the number

of buyers) of the total payments of all buyers. They show that a two-stage lowest-price

all-pay auction with proper entry fee E0 and reserve price R is revenue-maximizing. In the

first stage, buyers make the decision whether or not to pay the entry fee and participate.

All types of buyers participate, however, there exists a bidding threshold v̂ (≥ v) which

is also the threshold of winning type. The bidding threshold v̂ is the unique solution of
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J(v̂) = 0, the reserve price R equals v̂F (v̂)N−1

1−α
and the entry fee E0 equals αR(N−1)(1−F (v̂))

1−Nα
.20

For this symmetric setting, the revenue-maximizing auction defined by (a.1) to (a.3)

can be described as follows.

(b.1) There is no entry fee, the reserve price is v̂ (≥ v);

(b.2) Same as (a.2);

(b.3) If all participate, the highest buyer wins if his bid is no less than the reserve price

v̂, and his payment consists of two components. First, he pays z1, which is the second

highest bid or the reserve price v̂ (> v), whichever is higher. Second, every buyer pays

z2, where z2 = αz1

1−αN
> 0. If the highest bid is less than v̂, the seller keeps the item, and

no one pays.

Since the auction defined by (b.1), (b.2) and (b.3) is also revenue-maximizing, we thus

have the following result.

Corollary 5: The modified second price auction defined by (b.1)− (b.3) is revenue equiv-

alent to the revenue-maximizing two-stage lowest-price all-pay auction established by Go-

eree, Maasland, Onderstal and Turner (2005).

Note that in a symmetric setting without externalities, a first-price auction with reserve

price v̂ is also revenue-maximizing. Thus a revenue equivalent modified first price auction

can also be constructed following Proposition 5.

Interestingly, in the Section 4.2.2 auctions, the optimal reserve prices are set in the

same way as in Myerson (1981) where no externalities is involved. This result holds

because v0 = 0. In this case, the augmented virtual values of the players (including seller)

are ranked in the same order as the regular virtual values. Thus, the optimal reserve price

should be set in the same way as in Myerson (1981).

5 Revenue-Maximization with Cross Shareholders

We now turn to the setting of the third example in Section 2.1 where the externalities

are rather due to cross shareholding among buyers. While we set c0 = 0, eij = 0 and

αi = 0, ∀i, j in the setting of Section 2.2 to eliminate externalities denoted by these

parameters, we allow cross shareholding among bidders who compete for a scarce resource.

In this section, vi denotes the added value of buyer i if he is the winner. Following

20Please refer to Proposition 5 in Goeree, Maasland, Onderstal and Turner (2005) for details.
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Dasgupta and Tsui (2004),21 we assume that player i(≥ 0) owes a fraction of sij ∈ [0, 1]

of the player j(≥ 0) where
∑

j≥0 sij ≤ 1. We normalize s00 = 1, si0 = s0i = 0, ∀i ∈ N ,

i.e., there is no cross shareholding between buyers and seller.

Bidder i thus enjoys an identity-specific externalities sijvj if bidder j( 6= i) wins due to

the shareholding.22 This component sijvj is rather the private information of the winner.

Due to cross shareholding, bidder i suffers a negative externality −∑j∈N ,j 6=i sijxj from

other bidder’s payments xj, j ∈ N . When sii = 1, ∀i ∈ N , we have the standard setting

without cross shareholding.

The players’ payoffs are as follows. Buyer i’s payoff is sijvj −
∑

k∈N sikxk if player j

wins and payments of bidders are xk, ∀k ∈ N . The seller’s payoff is v0 +
∑

j∈N xj if he

keeps the item; his payoff is
∑

j∈N xj if bidder i wins. The game extends as in Section

2.2. Shares sij are public information, which is revealed at time 0.

For any truthful direct semirevelation mechanism (p,x) implementing full participa-

tion, the seller’s expected revenue is given by:

R̃(p,x) = Ev

{
v0p0(v) +

N∑

i=1

xi(v)
}
. (21)

For buyer i with private value vi, if he submits signal mi ∈ Mi, his interim expected

payoff is given by:

Ũi(vi, mi;p,x) = Ev−i

{∑

j≥0

sijvj pj(mi,v−i) −
∑

j∈N
sijxj(mi,v−i)

}
. (22)

The seller’s optimization problem is to find the revenue-maximizing truthful direct

semirevelation mechanism (p̃∗, x̃∗) that implements full participation. In other words,

the seller maximizes R̃(p,x) subject to constrains (4)-(6) where Ui(·, ·; ·, ·) functions are

replaced by Ũi(·, ·; ·, ·). This optimization program can be solved following the same

method as in Section 3. A counterpart of Lemma 1 is the following.23

Lemma 3: Direct semirevelation mechanism (p,x) is a truthful direct semirevelation

mechanism that implements full participation, if and only if ∀i ∈ N the following condi-

21They studied standard first price and second price auctions.
22We can allow the identity-specific externalities take a form of hi(vj), which can alternatively be

interpreted as informational externalities.
23The proof is omitted as it follows Myerson (1981) closely.
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tions and (6) hold:

Qi(v
′
i;p) ≤ Qi(vi;p), ∀vi ≤ v′

i ≤ vi ≤ vi, (23)

Ũi(vi, vi;p,x) = Ũi(vi, vi;p,x) + sii

∫ vi

vi

Qi(si;p)dsi, ∀vi ∈ [vi, vi], (24)

Ũi(vi, vi;p,x) ≥ Ũi(vi, ∅;p,x). (25)

Note that only (24) differs from its counterpart in Lemma 1. In Lemma 1, sii = 1, ∀i.

Define payment coefficient matrix SN×N = (sij)i,j≥1. We assume S is nonsingular. When

sij = 1
N

(symmetric cross shareholding), S actually is singular. We will discuss this case

at a later stage.

Define b̃ = (b̃i)N×1 = (S ′)−11IN×1 where all elements in 1IN×1 are 1. In this paper, we

focus on the case where bi ≥ 0, ∀i ∈ N . When there is a bi which is negative, the optimal

mechanism does not exist. This will be clear after we present Lemma 4.

Before we proceed to derive the expression for the seller’s expected revenue from a

truthful direct semirevelation mechanism, we further introduce the following definitions

of generalized virtual values of players.

Definition 0′: (Generalized Virtual Values) J̈i(vi) = vi
∑

j∈N b̃jsji − b̃isii
1−F (vi)

f(vi)
, i ∈

N are defined as the buyers’ generalized virtual value functions; and J̈0(v0) = v0 is defined

as the sellers’ generalized virtual value.

Note that the generalized virtual values cover the virtual values coined by Myerson

(1981) as a special case. When sii = 1, sij = 0, ∀i, j, we have b̃i = 1, ∀i. Thus the

generalized virtual values degenerate to the standard case. Clearly, J̈i(·) is increasing

when Ji(·) is increasing and bi ≥ 0, ∀i ∈ N . Similar to Lemma 2, we have the following

Lemma.24

Lemma 4: For a truthful direct semirevelation mechanism (p,x) that implements full

participation, the seller’s expected revenue can be written as

R̃(p,x) = Ev

(∑

i≥0

pi(v)J̈i(vi)
)
−

N∑

i=1

b̃iŨi(vi, vi;p,x). (26)

24The proof is similar to that of Lemma 2. Note that b̃′Sx = 1I′x =
∑

i∈N xi, where x1×N = (xi).
This fact and (24) leads to Lemma 4. The proof is available from the author upon request.
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Lemma 4 differs from its counterpart in Myerson (1981) in the following aspects.

First, a generalized version of virtual values appears in (26); Second, due to the cross

shareholding, constants b̃j, j ∈ N appear both in J̈i(·) and before Ũi. From Lemma 4, it

is clear that when there is a b̃i < 0, then a higher Ũi(vi, vi;p,x) always benefits the seller.

Thus, an optimal mechanism must not exist. In addition, Lemma 4 immediately leads to

that a version of revenue equivalence theorem like Proposition 1 holds in a setting with

cross shareholding among buyers.

We are now ready to characterize the optimal mechanism. Before we present the

revenue-maximizing selling mechanism, we first introduce the following definitions.

Definition 2′: (Full Participation Winning Probabilities I) If all buyers participate

and buyer i, ∀i ∈ N submits signal mi ∈ [vi, vi], the object is assigned to the player

(including the seller) whose signal renders the highest “generalized virtual value”.25 Ties

are broken randomly.

The winning probabilities of Definition 2′ can be written equivalently as follows. ∀m ∈
V, ∀i ∈ {0, 1, · · · , N},

p̃∗i (m) =





1, if J̈i(mi) > maxN
j=0 ,j 6=i J̈j (mj ) and J̈i(mi) ≥ 0 ,

0, otherwise.
(27)

Definition 3′: (Full Participation Payments I) The winning buyer i pays siiJ̈
−1
i (max{0,

maxj 6=i J̈j(mj)});26 each losing buyer pays an externality-correcting payment (positive or

negative) that equals the allocative identity-specific externality (sijmj) to him.

The full participation payments of Definition 3’ can be written equivalently as follows.

∀m ∈ V, ∀i ∈ N ,

x̃†
i (m) =





siiJ̈
−1
i (maxN

j=0,j 6=i J̈j(mj)), if i wins,

sijmj, if j (≥ 0 ) wins, where j 6= i .
(28)

Let x̃†(m) = (x̃†
i (m)). We next define another set of full participation payment

functions x̃∗(m) = (x̃∗
i (m)).

Definition 4′: (Full Participation Payments II) x̃∗(m) = S−1 · x̃†(m).

25We treat the seller’s signal as v0.
26We use J̈−1

i (·) to denote the inverse function of J̈i(·), i ∈ N . If x < J̈i(vi), J̈−1
i (x) is defined as vi;

if x > J̈i(vi), J̈−1
i (x) is defined as vi.
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Based on Lemma 4 and the above definitions, we are then able to present the revenue-

maximizing mechanism as in the following proposition.27

Proposition 6: The nonparticipation threats of Definition 1′, the full participation win-

ning probabilities and payments of Definitions 2′ and 4′ constitute a revenue-maximizing

truthful direct semirevelation mechanism. The mechanism implements full participation

of bidders.

Proposition 6 reveals that cross shareholding fundamentally affect the revenue-maximizing

auction through shaping players’ generalized virtual values, which completely determine

the winning probabilities. From Definition 4′, we see a unique feature of the payment

schedule. A proportion (sii) of every buyer’s payments (siix̃
∗
i (m)) include externality-

correcting components that equal the allocative identity-specific externalities (sijmj if

player j wins, zero otherwise) and financial externalities (−∑N
j 6=i sijx̃

∗
j(m)), respectively.

This is clear as siix̃
∗
i (m) = x̃†

i (m) −∑N
j 6=i sijx̃

∗
j(m).

Proposition 6 means that the methodology of Section 3 is applicable to the case with

cross shareholding among buyers, where the identity-specific externalities are private in-

formation of the winner, and the financial externalities take the most general linear form.

We now turn to the case with symmetric cross shareholding among buyers. In this

case, sij = 1
N

in matrix S, thus S is singular and Proposition 6 does not apply. Though

we can set b̃i = 1 such that a result of (26) can still be obtained, the payments schedule

x̃∗(m) that is incentive compatible with the optimal winning probabilities p̃∗(m) does

not exist. This means that the optimal winning probabilities can not be defined as p̃∗(m)

of Definition 2′. These results are rather surprising as one may expect symmetric cross

shareholding to be the simplest case. Further work remains to be done in this direction.

6 Conclusion

This paper studies auction design with identity-specific and financial externalities. We

find that these two types of externalities interact fundamentally through shaping players’

externality-augmented virtual values, which are obtained from the regular virtual values

by adjusting for the externalities and seller’s destroying cost. At the optimum, the win-

ning probabilities of the players are determined by their augmented virtual values. The

27The proof is similar to that of Proposition 2. It is available from the author upon request.
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player with the highest externality-augmented virtual value wins given that it is positive.

Both types of externalities affect the winning probabilities completely through the same

channel of modifying players’ virtual values. A unique feature of the revenue-maximizing

mechanism is that buyers’ payments consist of externality-correcting components that

equal the two types of allocative externalities to them. These components eliminate the

impact of the externalities on the strategic bidding behavior. Our study provides a unified

treatment for revenue-maximizing mechanism design with pure identity-specific or finan-

cial externalities. In symmetric settings, modified second-price and first-price auctions

with externality-correcting payments are established to be revenue-maximizing.

We find that introducing the possibility for the seller to destroy the item enlarges

the freedom of revenue-maximizing mechanism design, when there exist identity-specific

externalities between seller and buyers. At the optimum, the seller destroys the unsold

item if and only if his augmented value is negative. Jehiel, Moldovanu and Stacchetti

(1996) point out that the seller is better off by not selling at all if the total identity-specific

externalities generated by a sale is larger than total values. Our analysis reveals that the

seller can be further better off by physically destroying the item while extracting payments

from all buyers, if his augmented value is negative. This reveals that the crucial force

driving the dismantling result is the identity-specific externalities on the buyers imposed

by the seller instead of those among the buyers.

When buyers suffer highly negative identity-specific externalities if the seller holds the

item, the seller’s optimal expected revenue increases as these externalities become more

negative. This provides an alternative explanation to why North Korea tries to convince

relevant countries that its nuclear weapons are powerful.

Financial externalities amplify the impact of the identity-specific externalities. Par-

ticularly, when the total identity-specific externalities on the buyers is negative when

the seller keeps the item, the existence of financial externalities among buyers further

decreases seller’s augmented value. Thus, financial externalities may lead the seller to

destroy the item, which may not be destroyed otherwise.

Our study leads to interesting findings on auction design for settings with pure financial

externalities. Especially for the case where the seller does not value the item, we estab-

lish one-to-one correspondence between revenue-maximizing auctions with and without

externalities. As a result, the revenue-maximizing auctions for a regular setting without

externalities need only be properly modified in the payments to be revenue-maximizing
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in settings with financial externalities.

The methodology and insights developed apply to the case with cross shareholding

among buyers, where the identity-specific externalities are private information of the

winner, and the financial externalities take the most general linear form. However, when

financial externalities take nonlinear forms, generally our methodology no longer applies.

More works need to be done in this direction.
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Appendix

Proof of Lemma 2: From (2),

∫ vi
vi

Ui(vi, vi;p,x)fi(vi)dvi

=
∫ vi

vi

(∫

V−i

(
vi pi(v) +

∑

j≥0

ei,j pj(v) − xi(v) + αi

∑

j∈N
xj(v)

)
f−i(v−i)dv−i

)
fi(vi)dvi

=
∫

V

(
vi pi(v) +

∑

j≥0

ei,j pj(v) − xi(v) + αi

∑

j∈N
xj(v)

)
f(v)dv. (A.1)

where f−i(v−i) =
∏N

j=1,j 6=i fj(vj) is the density of v−i, and f(v) =
∏N

i=1 fi(vi) is the density of
v. From (A.1), we have

1
1 −

∑
j∈N αj

N∑

i=1

∫ vi

vi

Ui(vi, vi;p,x)fi(vi)dvi

=
∫

V

(
p0(v)

∑

i∈N

ei,0

1 −
∑

j∈N αj
+

N∑

i=1

vi +
∑

j∈N ej,i

1 −
∑

j∈N αj
pi(v) −

N∑

i=1

xi(v)
)
f(v)dv. (A.2)

Note that ei,i = 0, ∀i ≥ 0. From (1) and (A.2),

R(p,x) = −c0 −
1

1 −
∑

j∈N αj

N∑

i=1

∫ vi

vi

Ui(vi, vi;p,x)fi(vi)dvi

+
∫

V

(
p0(v)(v0 + c0 +

∑

j≥0

ej,0

1 −
∑

j∈N αj
) +

N∑

i=1

pi(v)(
vi +

∑
j∈N ej,i

1 −
∑

j∈N αj
+ e0,i + c0)

)
f(v)dv.(A.3)

From (9), we have

∫ vi

vi

Ui(vi, vi;p,x)fi(vi)dvi =
∫ vi

vi

[Ui(vi, vi;p,x) +
∫ vi

vi

Qi(si;p)dsi]fi(vi)dvi

= Ui(vi, vi;p,x) +
∫ vi

vi

[
∫ vi

vi

Qi(si;p)dsi]fi(vi)dvi

= Ui(vi, vi;p,x) +
∫ vi

vi

[
∫ vi

si

fi(vi)dvi]Qi(si;p)dsi

= Ui(vi, vi;p,x) +
∫ vi

vi

[1 − Fi(si)]Qi(si;p)dsi. (A.4)
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From (7), we have

∫ vi

vi

[1 − Fi(si)]Qi(si;p)dsi

=
∫ vi

vi

[1 − Fi(si)]

{∫

V−i

pi(si,v−i)f−i(v−i)dv−i

}
dsi

=
∫

V
pi(v)

1 − Fi(vi)
fi(vi)

f(v)dv. (A.5)

From (A.4) and (A.5), we have

N∑

i=1

∫ vi

vi

Ui(vi, vi;p,x)fi(vi)dvi

=
N∑

i=1

Ui(vi, vi;p,x) +
∫

V

( N∑

i=1

pi(v)
1 − Fi(vi)

fi(vi)

)
f(v)dv. (A.6)

From (A.3) and (A.6), we have (11). 2

Proof of Proposition 1: According to the semirevelation principle, for any mechanism that
implements full participation, there must exist an equivalent truthful direct semirevelation mech-
anism that delivers the same participation and allocation for any v ∈ V, including the winning
probability for every player and payment for every bidder. The result in this proposition imme-
diately comes from applying Lemmas 1 and 2 to this equivalent mechanism. 2

Proof of Proposition 2: From (11), a truthful direct semirevelation mechanism that induces
full participation must be revenue-maximizing if it satisfies the following two conditions. First, it
minimizes Ui(vi, vi;p,x), ∀i ∈ N . Second, it also maximizes

∑N
i=0 pi(v)J̃i(vi), ∀v ∈ V. We show

that the direct semirevelation mechanism (p∗,x∗) of Proposition 2 satisfies the above criteria
and thus maximizes the seller’s expected revenue. We then verify that (p∗,x∗) is truthful.

First, the nonparticipation threats of Definition 1 push Ui(vi, ∅;p,x) to take the lowest
possible value minj≥0 ei,j. Note that we assume that the seller is cashless. Thus he cannot
create negative financial externalities to the nonparticipant by manipulating the payments of
the participants.

Second, the set of full-participation winning probability functions of Definition 2 clearly
maximizes

∑N
i=0 pi(v)J̃i(vi),∀v ∈ V.
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Third, the set of full-participation payment functions of Definition 4 drive Ui(vi, vi;p,x) to
exactly equal Ui(vi, ∅;p,x), which in turn equals minj≥0 ei,j. Note that Ui(vi, vi;p,x) cannot
be lower than Ui(vi, ∅;p,x) from (10).

From Definitions 2, 3 and 4, we can verify that

x∗
i (v) − αi

∑

j∈N
x∗

j (v) = x†
i (v)

= vi p∗i (v) +
∑

j≥0

ei,j p∗j (v) − min
j≥0

ei,j −
∫ vi

vi

p∗i (si,v−i)dsi, ∀i ∈ N . (A.7)

Therefore, for p∗i (·), 0 ≤ i ≤ N and x∗
i (·), i ∈ N , (2) leads to

Ui(vi, vi;p
∗,x∗)

= Ev−i

(
vi p∗i (vi,v−i) +

∑

j≥0

ei,j p∗j(vi,v−i) − x∗
i (vi,v−i) + αi

∑

j∈N
x∗

j(vi,v−i)

)

= min
j≥0

ei,j. (A.8)

Thus, we have shown that the Proposition 2 mechanism minimizes Ui(vi, vi;p,x), ∀i ∈ N ,
and it also maximizes

∑N
i=0 pi(v)J̃i(vi), ∀v ∈ V.

The full-participation winning probabilities and payments p∗(·) and x∗(·) together with the
nonparticipation threats of Definition 1 lead to a Nash equilibrium in which every type of buyers
participates and reveals truthfully their types, because the conditions in lemma 1 are satisfied.
We thus have that the full-participation winning probabilities and payments p∗(·) and x∗(·)
together with the nonparticipation threats constitute a truthful direct semirevelation mecha-
nism that maximizes the seller’s expected revenue. In the same spirit of Jehiel, Moldovanu and
Stacchetti (1996), there is no need to consider the joint deviation from the Nash equilibrium.28

Thus all the other winning probabilities and payments functions which are not relevant to the
equilibrium path can be specified in any way. 2

Proof of Proposition 4: Since the winning probabilities (18) of all players do not depend on
d ∈ (0, 1] if v0 = 0, the result follows from (11) and (15) immediately. Note that the lowest
types vi, i ∈ N always get zero payoff at the optimum in this setting. 2

Proof of Proposition 5: Suppose (p,x) is a revenue-maximizing general mechanism for the
case of no externalities, where p = (pi(·)) and x = (xi(·)). Define x̃ = Γ−1x. Thus if (p, x̃) is

28Footnote 11 in Jehiel, Moldovanu and Stacchetti (1996) points out that joint deviations of buyers are
irrelevant since full-participation Nash equilibrium is studied.
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adopted for the case with financial externalities, then every bidder i has to pay the externalities
he enjoys/suffers on top of xi(·) by the construction of x̃i(·). Assume si(vi) is the equilibrium
strategy of bidder i when (p,x) is adopted in the setting without externalities, then clearly si(vi)
is also the equilibrium strategy of bidder i when (p, x̃) is adopted in the setting with financial
externalities.

Let s(v) = (s1(v1), · · · , sN (vN )). Note that Ev(
∑N

j=1 xj(s(v))) is the seller’s expected rev-
enue from (p,x) in the setting without externalities, and Ev(

∑N
j=1 x̃j(s(v))) is the seller’s ex-

pected revenue from (p, x̃) in the setting with financial externalities.29 Since
∑N

j=1 xj(s(v)) =
d
∑N

j=1 x̃j(s(v)), we have Ev(
∑N

j=1 xj(s(v))) = dEv(
∑N

j=1 x̃j(s(v))). As a result, Proposition 5
implies that (p, x̃) must be revenue-maximizing in the setting with financial externalities.

If (p̃, x̃) is a revenue-maximizing general mechanism for the case with externalities, where
p̃ = (p̃i(·)) and x̃ = (x̃i(·)). Define x = Γx̃. Similarly, we can show that (p̃,x) is a revenue-
maximizing general mechanism for the case without externalities. 2

29Note that destroying the item is never desired in the case of financial externalities.
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