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Abstract

We study optimal fiscal and monetary policy in an environment where explicit frictions give

rise to valued money, making money essential in the sense that it expands the set of feasible

trades. Our main results are in stark contrast to the prescriptions of earlier flexible-price Ram-

sey models. The two most important findings that emerge from our work are that the Friedman

Rule is typically not optimal and inflation is very stable over time. Inflation is not a substitute

instrument for a missing tax, as is sometimes the case in standard Ramsey models. Rather,

the inflation tax is the natural tax to use because trades using money have rents associated

with them. Regarding the optimal dynamic policy, realized (ex-post) inflation is quite stable

over time, in contrast to the very volatile ex-post inflation rates that arise in standard flexible-

price Ramsey models. Taken together, these findings turn conventional wisdom from traditional

Ramsey monetary models on its head.
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1 Introduction

Monetary theory has made important advances of late, ones that enable researchers interested in

applied policy questions to consider explicit frictions that give rise to valued money. In this paper,

we build on the work of Lagos and Wright (2005) to study optimal fiscal and monetary policy, in

the tradition of Lucas and Stokey (1983) and Chari, Christiano, and Kehoe (1991). Two important

findings emerge from our work, both of which are opposite those of earlier flexible-price Ramsey

monetary models: the Friedman Rule is typically not optimal and inflation volatility is low in the

face of business-cycle magnitude shocks. Our results thus turn conventional wisdom from standard

Ramsey monetary models on its head.

The contribution of Lagos and Wright (2005) — hereafter, LW — was to integrate search-based

monetary theory, in the spirit of Kiyotaki and Wright (1989, 1993), with standard dynamic general

equilibrium macroeconomics. This integration makes the study of policy questions much easier

and potentially more relevant than in earlier search-based models. However, these models have

been criticized on two grounds. First, they superficially resemble standard cash-in-advance (CIA)

or money-in-the-utility-function (MIU) models, making some question whether they really are any

deeper than reduced-form models of money. This point has been raised by, among others, Howitt

(2003). Second, until now, the policy questions addressed in these new models have been largely

confined to the deterministic welfare costs of inflation. When parameterized to seem as close as

possible to standard CIA and MIU models, the quantitative answers they have yielded to this

question are similar to those obtained with CIA and MIU models, further adding to the sense that

these new models simply re-invent CIA or MIU. In this paper, we ask a different policy-relevant

question in these new models, and even when we parameterize the model to look very similar to

standard reduced-form models of money, we reach conclusions very different from those reached

by Chari, Christiano, and Kehoe (1991) and others using typical CIA and MIU frameworks. Our

results thus show that the answers to policy questions may indeed be very different once monetary

frictions are treated seriously.

We study the canonical Ramsey problem of optimal fiscal and monetary policy using the LW

model. Our first main finding is that the nominal interest rate is typically positive because it is

optimal to tax activities that require cash.1 This optimal deviation from the Friedman Rule is

not because the inflation tax acts as a substitute instrument for a missing tax, as is sometimes
1In a different context, one that abstracts from public finance considerations, Rocheteau and Wright (2005) show

that a positive nominal interest rate may be optimal because it can correct inefficiencies along the extensive margin

of bilateral trading by influencing the relative number of traders on each side of the market. In other micro-founded

models of money that also abstract from public finance considerations, Shi (1997), Bhattacharya, Haslag, and Martin

(2005), and Head and Kumar (2005) also find that deviations from the Friedman Rule can be optimal.

3



the case in Ramsey models. That is, taxation of activities that require cash does not arise be-

cause of incompleteness of the tax system we consider. Rather, because all final goods should be

taxed to some degree as part of an optimal tax system, taxation of cash activities is naturally

part of the second-best allocation. This prescription is simply standard Ramsey theory. In the

LW environment, the explicit spatial and informational frictions that make money essential (in

Kocherlakota’s (1998) sense that it expands the set of feasible trades) render inflation the most

natural way of taxing activities that require money. Such a prescription does not arise in Chari,

Christiano, and Kehoe (1991) — hereafter, CCK — because taxation of labor income indirectly

taxes cash activities, making the inflation tax unnecessary in their environment. As we discuss,

our results can be reconciled both technically and conceptually with those of CCK. Interestingly,

Kocherlakota (2005) conjectured that the Friedman Rule may not be optimal in a Ramsey problem

in search-based models. Our results show his conjecture is correct.

Our second main finding is that realized (ex-post) inflation is quite stable over time in the face

of shocks, which is in contrast to the very volatile ex-post inflation rates that CCK find. Inflation

volatility is high in CCK and the related literature because surprise movements in the price level

allow the government to synthesize real state-contingent debt payments from nominally risk-free

government bonds, without distorting the relative prices of consumption goods. The government

then need not change other, distortionary, tax rates much in response to shocks. In our model, in

contrast, real activity is distorted by inflation because inflation affects relative prices of goods, in a

way that a flexible-price CIA or MIU model cannot articulate. The welfare cost of this relative-price

distortion dominates the insurance value of generating state-contingent debt in our model, rendering

inflation very stable. The frictions underlying monetary trade thus provide novel justification for the

optimality of inflation stability, a prescription that resonates with most central bankers. This result

also echoes the long-standing idea in monetary economics that inflation variability is undesirable

because it induces relative price shifts and demonstrates that nominal rigidities are not a necessary

feature of such a mechanism.

An important technical advantage of the LW framework is that the distribution of money-

holdings across agents is simple to track: it simply collapses periodically to a point. At the expense

of a heavier computational burden, one may want to think about optimal fiscal and monetary policy

when this distribution is non-trivial. Once one goes down that route, an interesting taxation frame-

work to apply may be the Mirrleesian one, in which idiosyncratic shocks and private information

become important considerations in shaping optimal policy. However, because even the simpler

step of characterizing the Ramsey-optimal policy, which assumes a representative agent, has not

been studied in this class of models, we think it makes sense to begin here.

The rest of the paper is organized as follows. Section 2 lays out the baseline LW model in which
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we study optimal policy. Section 3 presents the Ramsey problem. In Section 4, we characterize

the optimal policy. Included here is a proof for a particularly important version of the model in

which the Friedman Rule is not optimal, followed by quantitative results that demonstrate that

Ramsey-optimal inflation in the face of business cycle shocks is at least an order of magnitude more

stable than benchmark Ramsey results. Section 5 provides discussion and interpretation of our

results. Section 6 summarizes and offers ideas for future work.

2 Model

We establish our results in a version of the LW model. In this model, the agents in the economy

participate in a centralized market (CM) where they trade general consumption goods and assets

with the market and in a decentralized market (DM) where they trade specialized consumption

goods bilaterally. To enhance comparability with the benchmark cash-credit environment used

by CCK, we alter slightly the timing of markets in the original LW model. Specifically, in our

version, the CM is the first market in a given period, followed by the DM. We make this alteration

because we would like asset markets (which in the LW model meet in the CM) to convene in any

period before goods markets (in particular, before goods markets in which money must be used

for transactions), which is the timing assumed by CCK. However, we do not see how any of our

results depend on the temporal ordering of markets within a period. We proceed by describing the

activities of the government, households, and firms in our model.

2.1 Government

Government consumption is assumed to be composed entirely of goods produced in the CM. In

nominal terms, the flow budget constraint of the government is

Mt + Bt + Ptwtτ
h
t Ht = PtGt + Mt−1 + Rt−1Bt−1,

which states that the government has three sources of revenues to pay for its consumption: labor

income tax revenues, nominal money creation, and nominal debt issuance. The notation is standard:

Mt denotes nominal money outstanding at the end of period t, Bt is nominally risk-free government

debt outstanding at the end of period t, Rt is the gross nominal interest rate on bonds, τh
t is a

proportional labor income tax on aggregate hours worked Ht in the CM, Pt is the nominal price

level in the CM, and wt is the real wage in the CM. The nominal return Rt is known at the time

Bt is issued and paid in the CM of period t + 1. We assume that bonds are simply book entries

with no tangible proof that one can carry around.
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2.2 Households

Households periodically transact in markets for general goods and assets (the CM) and in markets

for specialized goods (the DM). In the DM, money is essential in the sense that transactions there

are infeasible without money.2 In the CM, because markets are Walrasian trades can proceed with

or without money. We describe first the timing of events in a given period and then present the

household’s CM and DM problems.

Events unfold for a household in a given period t as follows:

• The household begins the CM with portfolio mt−1 and bt−1.

• The uncertainty for the current period is resolved, and the household observes government

consumption Gt and the level of technology Zt. We denote the aggregate state collectively

by St.

• The household receives the receipts from bond holdings, Rt−1bt−1.

• The household chooses its CM consumption xt, labor supply ht, portfolio (mt, bt) and pays

the labor income tax.

• The household enters the DM with mt.

• Depending on the household’s trade in the DM, it exits the DM with mt− dt, mt + dt, or mt

money holdings, where dt is the buyer’s payment in bilateral trade.

2.2.1 Household CM Problem

For a household that enters the CM with money holdings mt−1 and bond holdings bt−1, the CM

problem is

Wt (mt−1, bt−1, St) = max
xt,ht,mt,bt

{U(xt)−Aht + Vt(mt, bt, St)}

subject to

Ptxt + mt + bt = Ptwt(1− τh
t )ht + mt−1 + Rt−1bt−1, (1)

where Wt(.) denotes the value of entering the CM and Vt(.) denotes the value of entering the DM

that convenes after the CM in period t. Note that instantaneous utility in the CM is separable and

linear in labor; it is this quasi-linearity in preferences that makes the LW model so tractable because

it guarantees a degenerate distribution of money holdings across households after the conclusion of

each CM.
2In a more general model, one can allow a double-coincidence meeting where barter takes place. Doing so does

not change any of the properties of the current model and we abstract from it.
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Eliminating ht in the objective function using the budget constraint, the first-order conditions

with respect to xt, mt, and bt are

U ′(xt) =
A

wt(1− τh
t )

, (2)

A

Ptwt(1− τh
t )

= Vm,t(mt, bt, St), (3)

A

Ptwt(1− τh
t )

= Vb,t(mt, bt, St), (4)

familiar from LW. These optimality conditions imply the usual LW results about degeneracy of asset

holdings (mt, bt) across households because they are independent of (mt−1, bt−1).3 All households

choose the same portfolio at the end of the CM regardless of the portfolio they entered the market

with. Thus, the LW result of degeneracy of money holdings readily extends to bond holdings as

well. Moreover, we have standard envelope conditions

Wm,t(mt−1, bt−1, St) =
A

Ptwt(1− τh
t )

, (5)

Wb,t(mt−1, bt−1, St) =
ARt−1

Ptwt(1− τh
t )

,

which show Wt(.) is linear in its arguments. In our derivations below, we use

χt ≡ Et

[
A/{Pt+1wt+1(1− τh

t+1)}
]

which is the marginal value of entering t + 1 with one extra

unit of money.

2.2.2 Household DM Problem

Now we turn to the household’s DM problem. Knowing that the distribution of money holdings

is degenerate in equilibrium, we will, for notational simplicity, write the household DM problem

assuming that when it meets a trading partner, the trading partner has equilibrium money holdings

Mt; this allows us to conserve on integrating over all possible money holdings of trading partners

that a given household could meet. With probability σ, the household is a buyer in the DM; with

probability σ, the household is a seller in the DM; and with probability 1 − 2σ, the household

does not participate in the DM and continues to the CM of the next period without transacting.4

3This result requires a small qualification for bond holdings. There are two parts of the argument in LW. The

first part relies on the observation that (mt−1, bt−1) does not appear in (3) and (4). The second part relies on the

strict concavity of V (.) or, more specifically, the strict monotonicity of Vm(.) and Vb(.) which means the choice of mt

and bt is unique. Both parts of the argument go through for money in our environment but only the first part goes

through for bonds. This means that in principle there could be multiple values of bt that households choose, which

can create a distribution of bond holdings. Fortunately, such a distribution of bonds holdings is not important for

any of our results because bond-holdings will not affect the bargaining problem, as we show below.
4This setup can be justified by either the search framework of the original LW model or the preference shocks

setup of AWW.
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Buyers consume q in the DM, experiencing utility u(q); sellers produce q in the DM, experiencing

disutility, which can be interpreted as the cost of production, c(q, Z), where cZ < 0. We assume

throughout our basic model that c(q, Z) = q/Z.5

We can write the problem of a household that enters the DM with portfolio (mt, bt) as

Vt(mt, bt, St) = σ {u [q (mt, Mt, St)] + βEtWt+1 [mt − d(mt,Mt, St), bt, St+1]}
+ σ {−c [q (Mt,mt, St) , Zt] + βEtWt+1 [mt + d(Mt,mt, St), bt, St+1]} (6)

+ (1− 2σ)βEtWt+1 (mt, bt, St+1) .

The quantity q(mbt,mst, St) is the quantity produced and exchanged in a bilateral meeting in the

DM, where mb denotes the money holdings of the buyer, ms denotes the money holdings of the

seller, and d(mb,mst, St) is the amount of money that changes hands. We refer to [q(.), d(.)] as the

terms of trade in a single-coincidence meeting. Note that due to the nature of the bonds, neither

the buyer’s nor the seller’s bond holdings will matter for q and d.

In the DM, we must specify the protocol by which the price and quantity in any bilateral trade

are determined — that is, we must define the structure by which the terms of trade are determined.

We choose generalized Nash bargaining problem with the bargaining power of buyer given by θ.

Denoting the portfolio of the buyer by (mt, bt), that of the seller by (m̃t, b̃t), the generalized Nash

bargaining problem is

max
qt,dt

[u(qt) + βEtWt+1 (mt − dt, bt, St+1)− βEtWt+1 (mt, bt, St+1)]
θ

×
[
−c(qt, Zt) + βEtWt+1

(
m̃t + dt, b̃t, St+1

)
− βEtWt+1

(
m̃t, b̃t, St+1

)]1−θ

subject to

dt ≤ mt. (7)

where (7) is simply a feasibility condition stating the buyer cannot spend more than he has and the

threat points are the values of continuing on to the next CM in period t + 1. Using the envelope

condition (5) and the definition of χt

max
qt,dt

{u(qt)− βdtχt}θ {−c(qt, Zt) + βdtχt}1−θ

subject to (7). In equilibrium, one can show, as LW do, (7) binds and the quantity produced solves

βχtmt = g(qt, Zt), (8)
5This functional form can be obtained by assuming a linear production function in effort, q = Ze, and a linear

disutility of effort, −e, which is just a normalization. Inverting the production function and substituting into the

disutility function gives the cost function c(q, Z) = q/Z.
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where

g(q, Z) ≡ θc(q, Z)u′(q) + (1− θ)u(q)cq(q, Z)
θu′(q) + (1− θ)cq(q, Z)

(9)

as in LW. The efficient quantity in this bilateral meeting is given by q∗(Zt) which solves u′(q) =

cq(q, Z). It remains to be seen whether or not the Ramsey equilibrium will feature q = q∗. Because

the expectation in χt is taken with respect to St, we denote the bargaining problem outcomes as

q(mt, St) and d(mt, St), where the first argument is understood to be the money holdings of the

buyer. Substituting this solution into the DM problem (6) and using the envelope conditions for

Wt(.), we get

Vt(mt, bt, St) = σ {u [qt (mt, St)]− c [q (Mt, St) , Zt]− βχtmt + βχtMt}+ βEtWt+1 (mt, bt, St+1) .

The relevant envelope conditions for Vt(.) are

Vm,t (mt, bt, St) = βχt

[
σ

u′(q)
gq(q, Z)

+ 1− σ

]
(10)

Vbt,t (mt, bt, St) = βRtχt. (11)

where we used (8) and that ∂qt/∂mt = βχt/gq(qt, Zt).

2.3 Firms

In the CM, a representative firm hires labor in a competitive labor market and operates the linear

production technology Yt = ZtHt. Profit-maximization therefore implies the wage is wt = Zt in

equilibrium.

2.4 Private-Sector Equilibrium

Imposing equilibrium (mt = Mt, xt = Xt, etc.) and combining the firms’ and households’ opti-

mality conditions, we can define the equilibrium as follows. Given policy variables {τh
t , Rt}∞t=0, the

technology realization {Zt}∞t=0, the government spending realization {Gt}∞t=0, and initial condition

(M0, B0), equilibrium is a set of processes {qt, Bt, Mt, Xt, Ht, Pt}∞t=0 satisfying

U ′(Xt) =
A

(1− τh
t )Zt

, (12)

βMtEt

[
U ′(Xt+1)

Pt+1

]
= g(qt, Zt), (13)

U ′(Xt)
Pt

= β

[
σ

u′(qt)
gq(qt, Zt)

+ 1− σ

]
Et

[
U ′(Xt+1)

Pt+1

]
, (14)

U ′(xt)
Pt

= βRtEt

[
U ′(xt+1)

Pt+1

]
. (15)
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Xt + Gt = ZtHt, (16)

Mt + Bt + PtZtτ
h
t Ht = PtGt + Mt−1 + Rt−1Bt−1.

where we used (2) and the definition of χt to get χt = Et [U ′(xt+1)/Pt+1]. Combining (14) and (15)

we get a no-arbitrage condition between money and bonds

Rt = σ
u′(qt)

gq(qt, Zt)
+ 1− σ, (17)

For the Ramsey problem, it will be useful to combine (13) and (14) and rearrange for real money

balances,
Mt

Pt
=

g(qt, Zt)
U ′(Xt)

[
σ

u′(qt)
gq(qt, Zt)

+ 1− σ

]
. (18)

Furthermore, in any monetary equilibrium, Rt ≥ 1 because otherwise households could earn un-

bounded profits by selling bonds and buying money. We represent this restriction in terms of

allocations using (17) as

σ

(
u′(qt)

gq(qt, Zt)
− 1

)
≥ 0. (19)

which we will call the zero-lower-bound (ZLB) constraint.

3 Ramsey Problem

As is common in the Ramsey literature, we adopt the primal approach and cast the Ramsey problem

as that of a planner that chooses allocations subject to feasibility and the need to raise exogenous

government revenue, making sure the resulting allocations are implementable as a monetary equi-

librium. We prove the following in Appendix A.1:

Proposition 1. The allocations in a monetary equilibrium satisfy (16), (19), and the present-value

implementability constraint (PVIC),

E0

∞∑

t=0

βt

[
U ′(Xt)Xt −AHt + σg(qt, Zt)

(
u′(qt)

gq(qt, Zt)
− 1

)]
= U ′(X0)

[
M−1 + R−1B−1

P0

]
. (20)

In textbook Ramsey problems, implementability constraints typically take the form

E0
∑

t βt
∑

i Ui(x1t, ..., xNt)xit = a0, where {xit}N
i=1 is the set of N goods the agent consumes at

time t.6 At first glance, (20) does not seem to conform to this general form because the term

related to the DM, σg(qt, Zt)(u′(qt)/g′(qt)− 1) does not look like marginal utility of a good times

the quantity of that good. However, this term does indeed have such an interpretation; we can

show that the term in the PVIC is simply the product of money balances and its marginal utility.
6In the CCK model, for example, instantaneous utility is defined over cash goods, credit goods, and labor,

u(c1, c2, l), and the PVIC takes the form
∑∞

t=0 βt [u1tc1t + u2tc2t + ultlt] = A0, with A0 a function of initial money

and bonds. See Chari and Kehoe (1999, p. 1676-1686) for more discussion of optimal taxation problems in general.
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To see this, note that from the bargaining problem and (8), Sb(q) ≡ u(q)−g(q, Z) is the surplus

of the buyer and therefore S′b(q) ≡ u′(q)− gq(q, Z) is the marginal surplus of the buyer. Moreover,

money has no use in the DM unless the household is a buyer, which occurs with probability σ. Thus,

the marginal utility of money can be expressed as σS′b(q)∂q/∂m. From (8) we have m = g(q, Z)/βχ

and ∂q/∂m = βχ/gq(q, Z). Combining these, we obtain the third term under the summation in the

PVIC. With this interpreration, one may argue that our model looks like a MIU model, which would

have a term mUm in the PVIC. In our context, though, the marginal utility of money is linked

to the fundamentals of the economy — allocations and technology — and it is not an arbitrary

function.

If σ = 0, the DM shuts down and our PVIC collapses to the usual CCK PVIC in a real model.

That is, the model collapses to a purely real model. This is due to the fact that when σ = 0, the

only source of money demand shuts down in our model and the only equilibrium of the model is

the nonmonetary equilibrium.

We assume the Ramsey planner is able to commit at time zero to a policy for t ≥ 1. We thus

sidestep here the potentially interesting issue of time-inconsistency in this model. The Ramsey

problem is thus to choose {Xt,Ht, qt} to maximize

E0

∞∑

t=0

βt {U(Xt)−AHt + σ [u(qt)− c(qt, Zt)]} (21)

subject to the CM resource constraint

Xt + Gt = ZtHt,

the PVIC (20), and the ZLB constraint (19), taking as given {Gt, Zt}. In the Ramsey objective

functon (21), σ [u(qt)− c(qt, Zt)] arises because the planner aggregates over the measure σ of buyers

in the DM (each of whom experiences u(qt)), the measure σ of sellers in the DM (each of whom

experiences c(qt, Zt)), and the measure 1 − 2σ of households that do not trade in the DM. In

Appendix A.2, we list the conditions that characterize the solution to this problem, along with the

conditions that allow us to construct the policies and prices that support the Ramsey allocation.

Thus, as we already noted, our approach is a straightforward application of Ramsey theory.

4 Optimal Policy

One of our central results is that for a range of values for θ, the optimal nominal interest rate

is positive. We can establish this analytically for the case θ = 1, which we do next. The case

θ = 1 is an especially important one because Rocheteau and Wright (2005) show that for this case,

bargaining yields the same outcomes as if there were competitive forces in the DM, making DM
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trades look less non-standard from the point of view of modern DGE theory. The θ = 1 case is as

conceptually close as this class of models can get to a standard CCK-type environment. For θ < 1,

analytical solutions are not as easy to obtain, and we resort to numerical solutions.

4.1 Optimal Deviation from the Friedman Rule

4.1.1 Proof for θ = 1 (Buyer-Take-All Bargaining)

The Friedman Rule is not optimal if θ = 1, as we now show:

Proposition 2. (Optimal Deviation from the Friedman Rule) If θ = 1, the optimal policy

features a strictly positive net nominal interest rate in every period t ≥ 1. Furthermore, if u(.)

is CRRA (constant relative risk aversion) then the optimal nominal interest rate is constant over

time.

Proof. Let ξ be the multiplier on the PVIC (20) in the Ramsey problem, and consider the Ramsey

problem with the ZLB constraint dropped. The first-order condition of this problem with respect

to qt for t ≥ 1 is given in Appendix A.2. With θ = 1, we have that g(q, Z) = c(q, Z) = q/Z, so this

FOC simplifies considerably,

u′(qt)− 1
Zt

= −
(

ξ

1 + ξ

)
qtu

′′(qt). (22)

Because u is strictly concave, the multiplier ξ > 0 under any interesting Ramsey allocation, and

of course qt > 0 ∀t in a monetary equilibrium, the right hand side of the first order condition above

is strictly positive. This implies u′(qt) > 1/Zt, which in turn implies

σ
u′(qt)

gq(qt, Zt)
+ 1− σ > 1,

imposing gq(q, Z) = cq(q, Z) = 1/Z because θ = 1. But this implies, by the equilibrium condi-

tion (17), that Rt > 1, so we have established that the Friedman Rule is not optimal.

Next, suppose u(q) = q(1−η)/(1 − η). Looking at (17), we see that for Rt to be constant over

time, u′(qt)/gq(qt, Zt) has to be constant. With θ = 1, this requires that Ztu
′(qt) is constant. The

CRRA utility function has the property qtu
′′(qt) = −ηu′(qt). Imposing this in (22) and collecting

the Ztu
′(qt) terms, we have

Ztu
′(qt) =

[
1− η

(
ξ

1 + ξ

)]−1

,

which shows that Ztu
′(qt) is constant.

Deviations from the Friedman Rule have been obtained in other Ramsey models, as well. For

example, Schmitt-Grohe and Uribe (2004a) show that a positive nominal interest can tax producers’

monopoly profits, and Chugh (2006) shows that it can tax monopolistic labor suppliers’ rents. We
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know from Ramsey theory that taxing rents is optimal because it is non-distorting. However, the

deviations from the Friedman Rule in Schmitt-Grohe and Uribe (2004a) and Chugh (2006) are

instances of the Ramsey planner using a positive nominal interest rate to indirectly tax some rent

— in neither case is activity requiring money the ultimate object the Ramsey planner seeks to tax.

As we discuss in Section 5, the deviation from the Friedman Rule that arises in our model is due

to a concern for directly taxing activity requiring cash; we also offer a rent-seizing interpretation

that allows us to conceptually connect our results to CCK.

Regardless of the interpretation, though, a consequence of a positive nominal interest rate is

that DM activity (i.e., qt) is below its Pareto-optimal level. From the perspective of the results

in LW and much of the ensuing related work, which invariably find that q = q∗ is optimal, it is

surprising to entertain the idea that q < q∗ is optimal in any sense. However, as we mentioned

at the outset, a Ramsey problem — which is one about financing of government activities — is

inherently one about creating “optimal inefficiencies.” A standard result in public finance is that

such inefficiencies ought to be spread across all final goods. Because q is of course a final good, we

have q < q∗.

One may wonder, then, if there is another instrument that, if the Ramsey planner had it available

and were to use it, would reinstate the optimality of the Friedman Rule. A natural candidate is a

sales tax in the DM. We show in Section 5 that allowing for a DM sales tax in a straightforward

way leads to exactly the same Ramsey allocation problem that we have been studying. With the

presence of an additional policy instrument, an indeterminacy arises between its use and the use of

the inflation tax. A non-generic policy that decentralizes the same exact allocation that we have

already obtained involves setting the Friedman Rule along with some appropriate DM sales tax

rate. This does not overturn our main result that the Friedman Rule is typically — generically

— not optimal. We also point out that if one allowed for, say, a proportional subsidy to cash

good consumption in the CCK model, then a deviation from the Friedman Rule combined with

an appropriate subsidy would generically be the optimal policy there. Again, this possibility is

admitted due to an indeterminacy across instruments.

Leaving aside other instruments, then, left to still consider is the quantitative degree of the

departure from the Friedman Rule. The rent-seizing argument we alluded to above and discuss

further in Section 5 would suggest that the optimal inflation rate should be one that confiscates the

entire rent, but this would imply q = 0. Thus, the optimal inflation rate must balance the motive

to seize the money rent versus pushing q too low. Our numerical results, presented next for both

θ = 1 and the more general case θ < 1, confirm this intuition.
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4.1.2 Numerical Results

Obtaining analytic solutions for θ < 1 is not as easy, so we study the optimal steady-state policy

for this case numerically, using the full set of non-linear Ramsey conditions. Before presenting

numerical results, we briefly describe the parameterization of the model. To the extent possible,

we use the parameters and functional forms that LW provide, whose model is calibrated to match

some long-run features of the US economy.

The DM utility function is

u(q) =
(q + b)1−η − b1−η

1− η
,

with b = 0.0001, which is a parameter that forces u(0) = 0, which can occur in the DM if a

household does not meet another agent with whom to trade. In the CM, instantaneous utility is

B ln(X)−H.

We consider two cases: buyer-take-all in the bargaining problem (θ = 1), which is equivalent to

price-taking, and θ < 1. For the former case we use (η, B, σ) = (0.27, 2.13, 0.31) and for the latter

case we use (η, B, σ, θ) = (0.39, 1.78, 0.5, 0.34).

The exogenous government spending and TFP processes each evolve as an AR(1) in logs,

ln Gt+1 = (1− ρG) ln Ḡ + ρG ln Gt + εG
t+1,

ln Zt+1 = ρZ ln Zt + εZ
t+1,

with εG ∼ N(0, σ2
εG) and εZ ∼ N(0, σ2

εZ ). We calibrate Ḡ = 0.4, so that government purchases

constitute about 18 percent of total GDP in steady-state.7 In line with Schmitt-Grohe and Uribe

(2004b) and the RBC literature, we set the parameters of the stochastic processes σεG = 0.033,

σεZ = 0.007, ρG = 0.89, and ρZ = 0.81. With these volatility parameters, our model has a

standard deviation of government purchases of about 7 percent of the mean level of government

spending, and the volatility of total output is about 1.8 percent, both in line with data. The

persistence parameters of the exogenous processes are for an annual calibration, thus we set the

annual subjective discount factor β = 0.962, which delivers an annual real interest rate of about 4

percent. Finally, we choose the level of steady-state government debt, an object not pinned down

by the model, so that it is 45 percent of steady-state output, consistent with the parameterizations

of CCK and Schmitt-Grohe and Uribe (2004b).

The solid line in Figure 1 shows the steady-state Ramsey policy and key allocation variables as

functions of θ. At θ = 1, the optimal nominal interest rate is about 2 percent at an annual rate; the

associated optimal inflation rate is thus -1.6 percent, higher than the Friedman rate of deflation,

which would be -3.4 percent in our model.
7Real GDP takes into account both CM and DM output: σM/P + ZH.
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As θ falls below unity, the optimal nominal interest rate falls. This is due to a combination

of the holdup problem associated with holding money when θ < 1 discussed by LW and the

nonmonotonicity of the Nash bargaining solution discussed by Aruoba, Rocheteau and Waller

(2007). The former effect predicts that if θ < 1, the buyer does not obtain the full benefit from a

match, which reduces his incentives to hold money (i.e. he is held-up by the seller), causing the

equilibrium q to fall. The latter affect arises from the fact that when θ < 1, the level of real money

balances that maximize the buyer’s surplus is lower than the socially optimal level. In Section

5.1.5 we disentangle the two effects by considering a bargaining solution that satisfies individual

monotonicity, and we show that for any buyer’s surplus share, the Friedman Rule is not optimal.

Taking into account both of these (dis)incentives, the Ramsey planner reduces the inflation tax as

θ falls below unity – this balances the planner’s desire to tax the buyer’s surplus against the desire

to reduce the effects of the holdup and nonmonotonicity problems. Because seignorage revenue

(not shown) falls along with the nominal interest rate, the government’s revenue shortfall must be

made up with the labor tax, causing the labor tax rate to rise, as the top right panel of Figure 1

shows.

The associated responses of the allocation variables q and X are easy to understand as well.

We again emphasize that q is below its Pareto-optimal level, which, given all the particulars of the

LW environment, is q∗ = 1 at the steady state. Finally, and as is intuitive, as the labor income tax

rate rises with the fall in θ, hours worked and hence consumption in the CM decline.

If θ falls far enough the ZLB constraint binds, making the Friedman Rule the optimal policy.

For our calibration, the ZLB constraint binds if θ ∈ (0, 0.62), as can be seen by the fact that the

net nominal interest rate is zero over that interval. The kink when the ZLB constraint binds leads

to kinks in the labor tax rate and allocations as well.

The dotted line in Figure 1 shows the allocations and implied R and τh that emerge from the

Ramsey problem with the ZLB constraint (19) dropped. The results for θ ∈ (0.62, 1) are of course

identical because in that region the ZLB constraint did not bind anyway. With the ZLB constraint

dropped and θ ∈ (0, 0.62), we see that the Ramsey planner would like to implement, if it were

consistent with monetary equilibrium, a negative net nominal interest rate, apparently to boost q.

Of course, deflation faster than the Friedman Rule is inconsistent with a monetary steady-state

equilibrium. Hence, the Friedman Rule becomes the constrained optimal policy.

4.2 Optimal Inflation Stability

We now turn to the dynamics of the Ramsey policy, which reveals our second central result: optimal

inflation is very stable in the face of business-cycle magnitude shocks. To investigate the dynamic

behavior of our model, we solve for the dynamic Ramsey equilibrium and simulate the model. We
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conduct 1000 simulations of 500 periods each and discard the first 100 periods. As in Khan, King,

and Wolman (2003) and others, we assume that the initial state of the economy is the asymptotic

Ramsey steady state. For each simulation, we then compute first and second moments and report

the averages of these moments over the 1000 simulations. We offer some details and observations

regarding solving for the dynamics of our model and then present results.

As we explain in Appendix A.2, given {Zt, Gt}, the first-order conditions of the Ramsey problem

and the feasibility condition for the CM characterize the allocations {qt, Xt,Ht} and the multiplier

on the ZLB constraint, {ιt}. Then we can use the equilibrium conditions to back out {τh
t , Rt, πt}.

To reduce computational time, we approximate both the functions q(Zt, Gt) and X(Zt, Gt), as

well as π(Zt, Gt). Our strategy is to construct global nonlinear approximations of these functions

because of the presence of the potentially occasionally-binding ZLB constraint.8 Of interest to

many practitioners, however, should be our (unreported) findings that, for the versions of the

model in which we know for sure the ZLB constraint is always slack, first-order and second-order

local approximations yielded results virtually identical to our global approximation.9 To construct

the approximations, we use as the functional equations the first-order conditions of the Ramsey

problem with respect to qt and Xt and the equilibrium condition (14). We use the remaining

equations to solve for the other variables of interest.

Before turning to simulations, we make a few observations by inspecting the first-order con-

ditions of the Ramsey problem. First, government spending affects only CM hours because none

of the first-order conditions for qt, Xt, and ιt (the multiplier on the ZLB constraint) involve Gt.

Once Xt is determined, Ht adjusts according to the shocks to Gt. This result follows from the

quasi-linearity of preferences in the CM. Because households essentially have risk-neutral prefer-

ences over hours, fluctuations in Gt are fully reflected in Ht.10 Second, and related, the dynamics

of qt and Xt follow the dynamics of the technology shock as the latter is the only driving force for

the former. Third, for the particular utility function we choose in the CM – in fact for any CRRA

utility function — the labor income tax rate is constant over time.11 This can be viewed as the

extreme case of the usual consumption-smoothing motive as spelled out in, say, Barro (1979).
8We approximate these functions using linear combinations of Chebyshev polynomials, following Judd (1992). Re-

sults from Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2006) and Aruoba, Waller, and Wright (2006) indicate

that this approximation method is very accurate. While our algorithm allows the ZLB to be an occasionally binding

constraint, which means the multiplier ι(Zt, Gt) may have one or more kinks in it, our quantitative results indicate

that for the parameterizations we use the ZLB either always binds or never binds.
9Of course, this statement only holds for sufficiently-small driving shocks; the business-cycle magnitude shocks

that we assume are apparently small enough.
10To make this point more clear, if we shut down the technology shock, then all variables except for Ht will remain

at their steady state values, and Ht will fluctuate in line with Gt.
11This follows from the fact that ZtU

′(Xt) is constant. This can be seen easily from the first-order condition of

the Ramsey planner for Xt.
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Table 1 presents simulation-based moments for the key allocation and policy variables for θ = 1

(which, again, is equivalent to price-taking) and for θ < 1. Let us first discuss the results for θ = 1.

The first three rows show the dynamics of realized inflation, the labor income tax rate, and the

net nominal interest rate under the Ramsey policy. We hone in first on the result that the optimal

inflation rate is quite smooth over time, with a standard deviation of about only about 24 basis

points (at an annual rate) around a mean deflation rate of 2 percent. The very stable inflation

rate is in sharp contrast to the extremely volatile optimal inflation rate first found by CCK in a

flexible-price Ramsey model and recently verified in, among others, the flexible-price versions of

Schmitt-Grohe and Uribe (2004a, 2004b), Siu (2004), and Chugh (2006, 2007).12

In these baseline Ramsey monetary models, inflation does not distort the relative prices of goods.

It is easiest to see this in a cash-credit economy: the nominal price of both cash and credit goods

is P , and the relative price depends only on the nominal interest rate, reflecting the opportunity

cost of the money used to purchase the cash good. In other words, given a nominal interest rate,

dynamic fluctuations in the price level do not alter the relative price between cash and credit goods

and therefore do not affect equilibrium allocations. In these baseline models, then, the driving force

behind price-level dynamics is just the (desirable) ability of price-level fluctuations to tailor the real

returns on nominal government debt, thus avoiding the need to change other distortionary taxes in

the face of shocks to the government budget. Quantitatively, assuming business-cycle magnitude

shocks, realized inflation turns out to be very volatile.13

With money essential, this result is overturned because inflation affects the relative price of DM

and CM goods. We discuss the mechanism behind the optimality of inflation stability more fully in

Section 5, but the basic idea is that inflation affects the relative price between DM and CM goods

in a way that simply does not exist in a baseline Ramsey model. In a baseline Ramsey model, “cash

goods” and “credit goods” are assumed to have a unit marginal rate of transformation, meaning

their nominal prices (excluding the relative price induced by a positive nominal interest rate) are

by construction identical. With a unit relative price by construction, variations in inflation affect

both nominal prices equally. In contrast, in our model “cash goods” (q) and “credit goods” (X) do
12From their simulation experiments, CCK report a mean inflation rate of -0.44 percent with a standard deviation

of 19.93; Schmitt-Grohe and Uribe (2004a) report a mean inflation rate of -3.39 percent with a standard deviation of

7.47 percent; Siu (2004) reports a mean inflation rate of -2.59 percent with a standard deviation of 5.08 percent; and

Chugh (2006) reports a mean inflation rate of -4.01 percent with a standard deviation of 6.96 percent. Each of these

models is calibrated in a slightly different way from the others, but the general result that comes through is clear:

with flexible-prices, the Ramsey inflation rate is quite volatile.
13We also point out that with the assumption of full commitment on the part of the Ramsey planner, the use of

state-contingent inflation is not a manifestation of time-inconsistent policy. The “surprise” in surprise inflation is

due solely to the unpredictable components of government spending and technology, and not due to a retreat on past

promises.
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not have a fixed unit relative price. Hence, variations in inflation have the potential to distort their

relative price. Usual tax-smoothing reasons then suggest that it is optimal to have low volatility

in inflation because otherwise the margin between DM and CM goods would be disrupted. Our

quantitative results show that this channel is quantitatively powerful.

Other Ramsey models make the prediction that inflation stability is optimal, most notably

Schmitt-Grohe and Uribe (2004b), Siu (2004) and Chugh (2006). The basic mechanism behind

their inflation stability results is also a relative-price distortion caused by inflation; however, these

models all rely on nominal rigidities to generate the relative-price effect. We emphasize that in our

model, prices are fully flexible and yet inflation causes relative price distortions. The real frictions

underlying monetary exchange are behind our result.

An important feature of inflation dynamics is that it displays high persistence. In the benchmark

CCK model, which assumed fixed capital, inflation persistence is virtually zero no matter how

persistent are the driving shocks. Chugh (2007) shows that allowing for capital accumulation or

habit formation in preferences generates optimal inflation persistence, but clearly here we have

that result with neither of these features. The high persistence of Ramsey-optimal inflation is also

helpful in understanding the low volatility of inflation, as we discuss in Section 5.

Finally, consider the results for θ < 1, reported in the second panel of Table 1. The means of the

variables of interest are of course in line with the steady state results. Compared to the price-taking

case (θ = 1), the average labor income tax rate is higher and average consumption (both CM and

DM) and GDP are lower. The Friedman rule is optimal with an average deflation equal to the rate

of time preference. In our simulations, which are driven by business-cycle-magnitude shocks, we

find that the optimal nominal interest rate is once again constant over time.14 We also find that qt

is less volatile if θ < 1, which in turn causes GDP to be less volatile and the correlations of other

variables with GDP to be lower than what we find when θ = 1. In short, we find that except for

the expected changes in the means, the dynamic behavior of the Ramsey problem with θ < 1 is

qualitatively identical to the case with θ = 1.

5 Discussion

Here, we expand on the analysis and intuition behind our main results. We divide our discussion

into two parts, first further analyzing our long-run results and then further analyzing our dynamic

results.
14However, this result is not robust to large shocks. In simulations not reported here, we considered very large

negative technology shocks (a standard deviation of more than 60 percent of the average). When hit by these large

shocks, the Ramsey solution includes small deviations from the Friedman rule.
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5.1 Optimal Deviation from the Friedman Rule

As we mentioned above, one may be concerned about the sensitivity of our results to the inclusion

of a richer set of policy instruments. Such a concern can be justified by, for example, the results

of Correia, Nicolini, and Teles (2002), who show in a sticky-price Ramsey model that a rich set of

instruments can allow for the Friedman Rule to re-emerge, albeit as part of a non-generic policy.

Such a conclusion carries over to our model as well – however, as we show, allowing for a wide

range of natural instruments that could be used in the DM or the CM does not alter the basic

prescription that DM activity should be taxed. Throughout what follows, we focus on the case

θ = 1 because that is the case for which provide analytical results.

5.1.1 Alternative Instruments in the DM

Consider a proportional sales tax on DM transactions. We introduce a DM sales tax in the following

way: after a buyer turns over to a seller P̃tqt units of money in a DM trade (P̃t denotes the nominal

price of DM goods), the seller must remit τd
t P̃tqt to the government in the next CM, which, given

our timing assumptions, occurs in period t+1.15 Equivalently, we can suppose that the government

receives the revenue in the DM but waits until the next CM to spend it. Because asset markets are

not open in the DM, the government cannot invest this extra revenue in an interest-bearing asset

(nor can sellers, for that matter).

The solution to the DM bargaining problem in expression (8) modifies to

βZtχt(1− τd
t )mt = qt.

In terms of other private-sector equilibrium conditions relevant for the Ramsey problem, condi-

tions (17) and (18) modify to, respectively,

Rt = σ(1− τd
t )Ztu

′(qt) + 1− σ (23)

and
(1− τd

t )Mt

Pt
=

qt

[
σ(1− τd

t )Ztu
′(qt) + 1− σ

]

ZtU ′(Xt)
. (24)

To construct the PVIC, we must begin by summing the CM budget constraints of all households

(a measure σ of whom were buyers in period t−1 and thus enter period t with no money; a measure

σ of whom were sellers and thus enter period t with Mt−1 + (1− τd
t−1)Mt−1; and a measure 1− 2σ

of whom did not trade and thus have Mt−1), which yields

PtXt + Mt + Bt = Ptwt(1− τh
t )Ht + (1− στd

t−1)Mt−1 + Rt−1Bt−1.

15Thus, we assume that it is the sellers that pass along the sales tax receipts to the government; assuming that it

is buyers that remit taxes would formally lead to the same conclusion.
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Proceeding to construct the PVIC exactly as we show in Appendix A.1 (and now using the modified

equilibrium conditions (23) and (24)), one can show that the PVIC is the same as in (20), except for

the fact that τd
−1 appears as part of the constant term on the right-hand-side. Because optimization

begins in period zero, we treat τd
−1 as fixed and, in particular, equal to zero.

Thus, the Ramsey allocation problem is identical to that without the DM sales tax. What can

now differ, of course, is the precise way in which the Ramsey allocation is decentralized. Given the

Ramsey allocation, an indeterminacy arises between the nominal interest rate and the DM sales

tax, as condition (23) shows. Generically, the Friedman Rule still fails to emerge. One particular

policy, however, is to set the Friedman Rule along with whatever DM sales tax rate is required.

Thus, we can recover the optimality of the Friedman Rule; but this recovery is trivial because

we do not recover zero taxation of activities requiring cash, which means we do not recover the

Pareto-optimal level of q.

Another type of “direct” tax on DM activity one could entertain is to tax the surplus accruing

to buyers. If we were to introduce a (1− τ surplus) in front of the first term on the right-hand-side

of (6), this “surplus tax” would pre-multiply the third term under the summation in the PVIC (20).

Ramsey optimization with respect to this instrument would lead to τ surplus = 1, which would then

recover the Friedman Rule. However, surpluses that are bargained over in the DM are defined

in terms of utils. We do not see any sensible interpretation under which it makes sense for utils

to be taxed, and, moreover, for the government to be able to “convert” utils into real resources

that would help it finance its budget. Thus, “surplus taxation” schemes are not viable given the

primitives of our environment.

5.1.2 Alternative Instruments in the CM

We could also imagine adding other instruments in the CM. The standard intuition is that positive

nominal interest rates tax money holdings. Thus, imagine that the government could directly tax

households’ choice of money holdings. While this is of course a non-standard tax instrument, we use

it to illustrate that a deviation from the Friedman Rule in our model does precisely what standard

intuition suggests: it taxes money balances.

To implement a tax on money balances, replace the mt on the left hand side of the household CM

budget constraint (1) with (1 + τm
t )mt, where τm

t is the tax rate on money holdings. Tracing this

tax through the derivation of the equilibrium conditions, condition (17) modifies to (1 + τm
t )Rt =

σ u′(qt)
gq(qt,Zt)

+ 1−σ, while in condition (18) the term (1 + τm
t ) appears in the denominator of the left-

hand-side. Using the same manipulations as in Appendix A.1, it is easy to show that the Ramsey

PVIC is identically (20). Thus, the Ramsey allocation is identical. Clearly, given the Ramsey

allocation, an infinite number of combinations (R, τm) decentralize it, one of which involves the

20



Friedman Rule. However, again in accord with Ramsey theory and as we argued above for the

case of a DM sales tax, this is an uninteresting way of reinstating the Friedman Rule because we

have handed the Ramsey government a redundant instrument. The more interesting point is that

some sort of taxation of money balances is required, and, as we have already argued, inflation is a

natural way of achieving this.

One could also insert a proportional tax on CM consumption. Denoting such a tax by τx
t ,

clearly the only equilibrium condition where this tax will show up is in the CM consumption-

leisure optimality condition (12), which has the effect of rendering indeterminate the split of the

consumption-leisure wedge between the CM consumption tax and the CM labor tax. This in-

determinacy is standard and does nothing to alter our conclusions regarding taxation of money

holdings.

5.1.3 Comparison of Results with CCK

Our conclusion that the Friedman Rule is not optimal of course differs from that of CCK. At

a technical level, it can be reconciled with their result by considering basic principles of public

finance. In CCK, optimality of the Friedman Rule depends on a certain class of utility functions. In

particular, CCK require cash goods and credit goods to enter the utility function homothetically and

separably from leisure. Similarly, in Chari and Kehoe’s (1999) MIU model, money and consumption

must enter utility homothetically and separably from leisure in order for the Friedman Rule to be

optimal. These results are essentially an application of the uniform taxation result of Atkinson

and Stiglitz (1980), requiring cash-good consumption and credit-good consumption (or money and

consumption) to be taxed uniformly; a deviation from the Friedman Rule would mean that cash

goods are taxed more heavily than credit goods, hence cannot be optimal.

With θ = 1, the instantaneous social utility function (the one that the Ramsey planner maxi-

mizes) in our model takes the form U(q, X, e, h) = σ [u(q)− e] + U(X)−AH (e denotes the effort

of sellers in the DM). If we interpret q as the cash good and X as the credit good, q and X must

enter U homothetically to satisfy the CCK requirement. Our Proposition 2 admits this case. For

example, we can set u(.) = U(.) and Proposition 2 of course still holds. However, realize that,

given the structure of the LW model, e = q/Z. The reduced-form social utility function thus has

the form Ũ(q, X, h) = σ [u(q)− q/Z]+U(X)−AH, and q and X will in general not enter Ũ(q, X, h)

homothetically. In other words, even though we have homothetic preferences in terms of the prim-

itives, the reduced-form representation, which is the one relevant for the Ramsey planner, does not

feature homothetic preferences. Our results thus reconcile in a technical sense with those of CCK.

Given the lack of homotheticity of the social welfare function, there is no presumption that

the CCK result carries over to our environment. If we had simply started with the reduced-form
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social welfare function, one may have easily guessed the CCK result would not hold; doing so, of

course, would have begged the question of how such social preferences arise. In our setting, the

social welfare function arises from the primitives of the LW environment. As we show below, the

suboptimality of the Friedman Rule also holds in some natural and existing extensions of the LW

environment. Before turning to those extensions, however, we offer a more conceptual reconciliation

of our results with those of CCK and standard Ramsey theory.

5.1.4 Rents Associated with DM Activity

Given the fundamental need to tax activities requiring money, we think one useful way of considering

the deviation from the Friedman Rule is that it stems from the presence of a rent associated with

DM activity. To make ideas as clear as possible, consider again the case θ = 1. Recall that the

entire surplus of a DM trade is obtained by the buyer with θ = 1. We noted above that the

instantaneous social welfare function in our model takes the form σ[u(q)− e]+U(X)−AH. Define

W (q, X) ≡ σ[u(q)− e] + U(X). The e term in W (.) can be thought of as a scarce, or fixed, factor

in the social utility function. More precisely, from the perspective of a buyer, e is inelastic with

respect to any of his actions because e represents the (utility) cost to the seller. The social welfare

function aggregates preferences over both households that turn out to be buyers and those that

turn out to be sellers. With θ = 1, the full surplus of DM trades accrues to buyers, a feature

of equilibrium that the Ramsey planner of course understands; hence, maximization of the social

welfare function can be interpreted as maximization of simply buyers’ utility. From the Ramsey

point of view, the e term can be therefore viewed as a fixed factor in preferences.

With this way of thinking about the optimal policy problem, our results and interpretation

fit squarely into something pointed out by Chari and Kehoe (1999, p. 1734-1735): if preferences

exhibit decreasing returns in cash goods (our q) and credit goods (our X) because of a scarce

factor that affects preferences of cash goods, then the Friedman Rule is not optimal.16 Their literal

interpretation was that the fixed factor was something supplied inelastically by the representative

household. In our model, the latter part of this intuition is modified to something inelastically

supplied by some household because there is no representative household in the DM – rather, ex-

post, there are three types of households. The Ramsey planner, though, aggregates over all types,

so the “reduced-form” preferences feature this type of scarce factor in preferences. Note that this

not an artifact of some strange aggregation scheme: the Ramsey planner considers the ex-ante

utility of all agents, and households ex-ante do not know their DM type.
16As another exercise, we solved numerically for the optimal long-run policy in a basic CCK model assuming that

preferences over cash goods and credit goods took the ad-hoc form v(c1, c2) = σ[u(c1) − c1/Z] + U(c2). Even with

u(.) = U(.), we found, not surprisingly, that the optimal nominal interest rate was positive.
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Fixed factors are the source of rents. In our model, the scarce factor and hence the source

of rents is fundamentally related to DM activity. Hence arises our model’s prescription to tax

DM activity, be it through inflation, which we think is quite natural, through the DM sales taxes

we described above, through the less natural direct taxation of money balances we also described

above, or any combination of these. Of course, in our model, the fixed factor is not something we

arbitrarily introduce into preferences to obtain a deviation from the Friedman Rule — rather, it

arises from the primitives of the environment.

5.1.5 Alternative Model Specifications

We consider two alternative specifications for which we can prove variants of our Proposition

2 above. First, we drop the within-period separability assumption for utility and suppose the

household’s utility function is given by U(X, q). We are able to prove that if Uqx(X, q) < 0, i.e.

if q and X are Edgeworth substitutes, then a deviation from the Friedman rule continues to be

optimal.

Second, we consider a different pricing scheme in the DM. We assume that the buyer and the

seller split the surplus with the share θ received by the buyer. As Aruoba, Rocheteau and Waller

(2007) show, the only change in the equilibrium is that the function g(q, Z) in (9) is replaced by

g(q, Z) = (1− θ)u(q) + θc(q, Z)

with all equilibrium conditions and Ramsey optimality conditions unchanged. We are able to prove

that for any θ > 0 the Friedman rule is not optimal. This substantiates our intuition in Section 4.1.2

that the non-monotonicity of the Nash bargaining solution is the reason underlying the Friedman

rule becoming the constrained optimal policy as θ falls.

5.2 Optimal Inflation Stability

Here, we offer some other perspectives on our inflation stability result.

5.2.1 Relative Price Distortions

The fact that inflation exhibits quite low volatility in the face of shocks seems to stem from stabi-

lization of the relative price P̃t/Pt of DM and CM goods (where, as above, P̃t denotes the nominal

price of a DM good). Using equilibrium conditions, we can show that this relative price, in an

arbitrary private-sector equilibrium, can be expressed as

P̃t

Pt
=

Rt

ZtU ′(Xt)
.

23



We showed in Proposition 2 that for CRRA preferences the Ramsey equilibrium features Rt =

R ∀t. Furthermore, in the Ramsey equilibrium, ZtU
′(Xt) is also constant over time for CRRA

preferences (see footnote 13). Thus, the relative price P̃t/Pt is constant in the Ramsey equilibrium.

The issue thus becomes how or why (near-complete) stabilization of inflation is associated with

or required for (complete) stabilization of this relative price. Another way to express the equilibrium

value of this relative price is, using (14) and (18),

P̃t

Pt
=

g(qt, Zt)
βEt [U ′(Xt+1)/πt+1]

.

Due to covariance with U ′(Xt+1), the term in the denominator on the right-hand-side is of course

not simply expected future inflation, but our intuition for how movements in πt affect P̃t/Pt stems

from how movements in πt transmit into movements in Etπt+1.

We can track the dynamic behavior of Etπt+1 in our model by forecasting, using our approxi-

mated decision rules, the expected one-period-ahead Ramsey inflation rate along our simulations.

Across all our simulations, the correlation between πt and Etπt+1 is extremely high, at 0.99. More

importantly, the volatilities of πt and Etπt+1 are virtually identical. These two observations lead to

the conclusion that the dynamics of πt and Etπt+1 are virtually identical under the Ramsey plan in

our model, which we can also verify simply by inspecting time-series plots of these variables from

our simulations.

This is the opposite of what occurs in a basic CCK model. In a basic CCK model, πt is

very volatile, yet Etπt+1 is very stable, always remaining very close to its unconditional (i.e.,

deterministic steady-state) mean. The fact that the dynamics of πt and Etπt+1 are extremely

similar in our model is consistent with the finding we noted above that Ramsey-optimal inflation

is highly persistent in our framework. The fact that the dynamics of πt and Etπt+1 are extremely

dissimilar in a basic CCK model is consistent with the CCK result that Ramsey-optimal inflation

displays virtually zero correlation

The upshot of this analysis is that unanticipated inflation leaves an imprint on expected future

(one-period-ahead) inflation in our model, and low volatility in the latter is required to maintain a

stable relative price across the DM and the CM. This kind of policy transmission channel simply

does not exist in a CCK model because contemporaneous inflation is so little correlated with

conditional expectations of future inflation and hence does not distort activity.

5.2.2 Dissipation of Exogenous Volatility

Our settings for the standard deviations of the shocks to TFP and government purchases are in line

with CCK, Schmitt-Grohe and Uribe (2004b), Siu (2004), and Chugh (2006). In all these models,

relatively low volatility of inflation goes hand-in-hand with relatively high volatility of labor income
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tax rates. Given that our model predicts that both inflation and labor income tax rates exhibit very

low volatility, it is of interest to know where the volatility of the exogenous driving forces “goes”

in our model.

One mechanism through which volatility can be dissipated is through quasi-linearity of pref-

erences. Because households are essentially risk-neutral with respect to their CM level of hours

worked, some volatility of aggregate Ht is tolerable from the Ramsey point of view. In the first row

of Table 2, we report the volatility of key Ramsey policy and allocation variables in a version of

the CCK model featuring linear-in-labor preferences.17 The volatility of inflation, at 3.24 percent,

is a bit lower than the CCK benchmark (see footnote 14 above), and the volatility of Ht, at 1.13

percent, is a bit higher than the CCK benchmark. Thus, quasi-linearity of preferences and the

attendant rise in volatility of equilibrium labor explains part of the dissipation of volatility. But

it clearly does not explain all of it, given that our model’s inflation volatility is still an order of

magnitude smaller.

To further understand the result, we also tabulate the volatilities of Ramsey-equilibrium real

money balances and government debt outstanding at the end of period t − 1. By the latter, we

mean the nominal debt issued by the government in period t−1, valued at the price level of period

t− 1; that is, we define bt−1 ≡ Bt−1/Pt−1. Important to realize is that bt−1 is distinct from the real

debt repayments made by the government in period t — in terms of the price level in the period of

repayment, real repayments are Rt−1bt−1/πt. As the second row of Table 2 displays, in the baseline

calibration of our model, the volatilities of both real money balances and real government debt

outstanding are four times larger than in the quasi-linear CCK model. Apparently, the Ramsey

planner’s ability to generate volatility in these policy instruments permits low volatility of inflation.

As the third, fourth, and fifth rows of Table 2 show, the Ramsey-optimal volatility of real money

balances is sensitive to η, which governs curvature of DM preferences. To conceptually cast things

in terms of a MIU model, higher values of η mean household preferences are more risk-averse in real

money holdings; a decline in volatility of Mt/Pt as η rises naturally follows. However, notice that

real government debt obligations remain three to four times as volatile compared to the quasi-linear

CCK model, while inflation variability remains around 0.3 percent.

The way we understand these findings, then, is that the Ramsey government essentially has two

ways of engineering a particular time-path of government debt: keep real debt issuance (valued

at the price level of the period of issuance) relatively state-non-contingent and then use state-

contingent inflation to vary the debt returns; or make real debt issuance (valued at the price level of

the period of issuance) itself somewhat state contingent, which then requires less state-contingency
17Because this result was unavailable in the literature — all results reported in the studies we have cited feature

curvature in preferences with respect to leisure — we implemented a quasi-linear version of the basic CCK model

ourselves.
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in inflation to vary the debt returns.

We view this analysis as perhaps suggesting a new way to view existing Ramsey results: what

ultimately matters for the Ramsey planner is volatility in Rt−1bt−1/πt. The literature has typically

understood the mechanism to be one in which the required volatility must come through πt —

for example, see the discussion in Chari and Kehoe (1999, p. 1741-1742). However, due to the

forward-looking nature of (perhaps quite complicated) equilibrium relationships, it is conceivable

that the required volatility can be engineered through variations in bt itself, along with the Ramsey

planner’s manipulation of appropriate covariances, etc., which we do not investigate. The forward-

looking nature of equilibrium relationships seems to admit this possibility. Thoroughly parsing out

such effects is beyond the scope of our work; we thus leave to future research a more thorough

disentangling of such effects.

6 Conclusion

We view our work and results as a first step in taking more seriously the new class of micro-founded

models of money as a laboratory for studying policy questions. Given the general properties of the

environment we study, our central findings are that the Friedman Rule is typically not the optimal

policy and that inflation fluctuates very little over time. These findings are opposite those of the

workhorse CCK flexible-price Ramsey model. Despite the flexibility of prices in our model, our

inflation-stability result is much more in line with results from models featuring nominal rigidities

than models featuring flexible prices.

In an earlier version of our work, Aruoba and Chugh (2006), we also study optimal capital

taxation in the Aruoba, Waller, and Wright (2006) extension of the Lagos and Wright (2005)

model. The findings we report here all carry over to the environment with capital; the main new

finding is that the optimal policy calls for a subsidy to capital accumulation, counter to the standard

Ramsey prescription of setting zero long-run capital taxes. In light of recent results regarding asset

taxation in the new dynamic public finance literature — for example, Golosov, Kocherlakota, and

Tsyvinski (2003) and Albanesi and Sleet (2006) — and Albanesi and Armenter’s (2007) attempt

at reconciling them with standard Ramsey results, it may be interesting to know how or whether

the capital-taxation implications of a micro-founded model of monetary exchange square with this

growing body of knowledge.

There are of course a number of ways one might want to modify our framework. Monopoly

power in goods and labor markets are thought by many to be important realistic features. It would

be straightforward to introduce monopoly power in the CM. The results of Schmitt-Grohe and

Uribe (2004a) and Chugh (2006) suggest that inflation in such an environment would be partly

a direct tax on the money rent we identify and partly an indirect tax on producers’ and labor
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suppliers’ rents. It may be interesting to know quantitatively how these direct and indirect uses of

the inflation tax interact.

Once one has monopoly power in the CM, one could go further in adding elements monetary

policy makers often think are important, such as nominal rigidities in prices and wages. For exam-

ple, Aruoba and Schorfheide (2007) show that when one replaces the typical “cashless” assumption

of a Calvo-type model with micro-founded frictions for the use of cash, welfare implications are

altered significantly. Investigating both long-run and short-run optimal policy — be it monetary

alone or monetary and fiscal jointly — in the presence of both temporary nominal rigidities and

deep-rooted frictions underlying monetary trade also seems likely to yield new insights.

Pushing our first step in different directions, another interesting issue to study may be the nature

of and solution to the time-inconsistency problem of the Ramsey policy in this sort of environment.

It is not clear how the time-consistency results of, say, Alvarez, Kehoe, and Neumeyer (2004) or

Persson, Persson, and Svensson (2006), would extend to our environment. Neither is it clear how

the emerging results in the aforementioned new dynamic public finance literature, which places at

center stage distributional concerns, might extend to a version of our environment in which money

holdings were allowed to differ across households.

This paper is also part of a larger effort underway in the literature studying the policy implica-

tions of deep-rooted, non-Walrasian frictions in goods markets, money markets, and labor markets.

A central focus of this larger project has been to think about what sorts of departures from typical

Walrasian frameworks impinge importantly on conventional policy prescriptions derived from stan-

dard models. Much progress has recently been made using micro-founded models of labor market

transactions — for example, Walsh (2005), Trigari (2006), Lubik and Krause (2007), Faia (2007),

and Arseneau and Chugh (2007), to name just a few. We think much progress is in the offing using

micro-founded models of money as well.

Recent developments in understanding the micro-foundations of monetary exchange are some-

times viewed as simply having provided justification for the reduced-form models of money com-

monly used in practice, not least of all because they superficially end up resembling the reduced-form

models. Our results throw in to question the conclusion that they must therefore yield the same

answers to interesting questions as existing models. We think it may be worthwhile to re-examine

a number of issues in monetary policy using this now-tractable framework.
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A The Ramsey Problem

A.1 Proof of Proposition 1

That allocations from a monetary equilibrium should satisfy the CM feasibility condition (16) and

the zero-lower-bound constraint (19) is obvious.

Using the household optimality conditions (12), (14), and (15) along with the equilibrium con-

ditions, we now derive the present-value implementability constraint the Ramsey planner must

respect. We begin by summing the budget constrains of the three types of agents (buyer, sellers

and nonparticipants in the previous DM) to get

PtXt + Bt + Mt = Ptwt(1− τh
t )Ht + Mt−1 + Rt−1Bt−1. (25)

To construct the present-value implementability constraint, begin by multiplying the flow bud-

get constraint by βtU ′(Xt)/Pt and summing from t = 0..∞,

E0

∞∑

t=0

βtU ′(Xt)Xt +
∞∑

t=0

βtU ′(Xt)
Bt

Pt
+

∞∑

t=0

βtU ′(Xt)
Mt

Pt
=

∞∑

t=0

βtU ′(Xt)(1− τh
t )wtHt +

∞∑

t=0

βtU ′(Xt)
Mt−1

Pt
+

∞∑

t=0

βtU ′(Xt)
Rt−1Bt−1

Pt
.

We point out that, as usual in a dynamic Ramsey problem assuming commitment to the time-

zero policy, any Et terms that appear in intermediate expressions are eliminated by the law of

iterated expectations because the entire implementability constraint is conditioned on the time-

zero information set, hence the E0. For ease of exposition, we therefore proceed dropping Et

operators that would appear in intermediate expressions as well as the E0 operator because it is

understood to be present in all subsequent expressions.

Substitute into the second term on the left-hand-side using expression (15) to get

∞∑

t=0

βtU ′(Xt)Xt +
∞∑

t=0

βt+1U ′(xt+1)
RtBt

Pt+1
+

∞∑

t=0

βtU ′(Xt)
Mt

Pt
=

∞∑

t=0

βtU ′(Xt)(1− τh
t )wtHt +

∞∑

t=0

βtU ′(Xt)
Mt−1

Pt
+

∞∑

t=0

βtU ′(Xt)
Rt−1Bt−1

Pt
.

The second summation on the left-hand-side cancels with the the last summation on the right-

hand-side to leave only the initial bond position,

∞∑

t=0

βtU ′(Xt)Xt+
∞∑

t=0

βtU ′(Xt)
Mt

Pt
=

∞∑

t=0

βtU ′(Xt)(1−τh
t )wtHt+

∞∑

t=0

βtU ′(Xt)
Mt−1

Pt
+U ′(x0)

R−1B−1

P0
.
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Next, substitute into the second term on the left-hand-side using (14) to get
∞∑

t=0

βtU ′(Xt)Xt +
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1

[
σ

u′(qt)
g′(qt)

+ 1− σ

]
=

∞∑

t=0

βtU ′(Xt)(1− τh
t )wtHt +

∞∑

t=0

βtU ′(Xt)
Mt−1

Pt
+ U ′(x0)

R−1B−1

P0
.

Expand the second summation on the left-hand-side to get
∞∑

t=0

βtU ′(Xt)Xt +
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1
+ σ

∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1

[
u′(qt)
g′(qt)

− 1
]

=
∞∑

t=0

βtU ′(Xt)(1− τh
t )wtHt +

∞∑

t=0

βtU ′(Xt)
Mt−1

Pt
+ U ′(x0)

R−1B−1

P0
.

Cancel the second summation on the left-hand-side with the second summation on the right-hand-

side to leave only the initial money holdings,
∞∑

t=0

βtU ′(Xt)Xt+σ
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1

[
u′(qt)
g′(qt)

− 1
]

=
∞∑

t=0

βtU ′(Xt)(1−τh
t )wtHt+U ′(x0)

[
M−1 + R−1B−1

P0

]
.

Using (12), we can substitute into the first term on the right-hand-side to get
∞∑

t=0

βtU ′(Xt)Xt−
∞∑

t=0

βtAHt+σ
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt+1

[
u′(qt)

gq(qt, Zt)
− 1

]
= U ′(x0)

[
M−1 + R−1B−1

P0

]
.

Writing Mt
Pt+1

= Mt
Pt

Pt
Pt+1

, express this as

∞∑

t=0

βtU ′(Xt)Xt−
∞∑

t=0

βtAHt+σ
∞∑

t=0

βt+1U ′(xt+1)
Mt

Pt

Pt

Pt+1

[
u′(qt)

gq(qt, Zt)
− 1

]
= U ′(x0)

[
M−1 + R−1B−1

P0

]
.

Use (18) to substitute for Mt/Pt,
∞∑

t=0

βtU ′(Xt)Xt−
∞∑

t=0

βtAHt+σ

∞∑

t=0

βt+1 U ′(xt+1)
Pt+1

Pt

U ′(Xt)
g(qt, Zt)

[
σ

u′(qt)
gq(qt, Zt)

+ 1− σ

] [
u′(qt)

gq(qt, Zt)
− 1

]

= U ′(x0)
[
M−1 + R−1B−1

P0

]
.

Finally, from (14), we can make the substitution βEt

[
U ′(xt+1)

Pt+1

]
= U ′(Xt)

Pt

[
σ u′(qt)

gq(qt,Zt)
+ 1− σ

]−1
in

the third summation on the left-hand-side. Cancelling terms and reintroducing the E0 operator

leaves us with

E0

∞∑

t=0

βt

[
U ′(Xt)Xt −AHt + σg(qt, Zt)

(
u′(qt)

gq(qt, Zt)
− 1

)]
= U ′(x0)

[
M−1 + R−1B−1

P0

]
,

which is the present-value implementability (PVIC) constraint for the Ramsey problem in the

LW model. Any allocation that satisfies this restriction, the resource constraint, and the ZLB

constraint can be supported as a monetary equilibrium; furthermore, the allocations from any

monetary equilibrium can be described by these three conditions.
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A.2 The Solution to the Ramsey Problem

The Kuhn-Tucker conditions for the problem in Section 3 are

[u′(qt)− cq(qt, Zt)]

+ξ

[
gq(qt, Zt)

(
u′(qt)

gq(qt, Zt)
− 1

)
+ g(qt, Zt)

(
u′′(qt)gq(qt, Zt)− u′(qt)gqq(qt, Zt)

[gq(qt, Zt)]2

)]
(26)

+ιt

[
u′′(qt)gq(qt, Zt)− u′(qt)gqq(qt, Zt)

gq(qt, Zt)2

]
= 0,

U ′(Xt)− A

Zt
+ ξ

[
U ′′(Xt)Xt + U ′(Xt)− A

Zt

]
= 0,

Xt + Gt = ZtHt

E0
∑∞

t=0 βt

[
U ′(Xt)Xt −AHt + σg(qt, Zt)

(
u′(qt)

gq(qt, Zt)
− 1

)]
= U ′(x0)

[
M−1 + R−1B−1

P0

]

ιt

[
u′(qt)

gq(qt, Zt)
− 1

]
= 0, and ιt ≥ 0

We can represent the right-hand side of the PVIC in terms of allocations as

U ′(X)
[

g(q, 1)
βU ′(X)

+
B
β

]

where B is the steady state real bond balances and variables without subscripts are steady state

values.

With these FOCs in hand, we proceed as follows. Imposing steady state on these conditions,

we solve for the steady state values of allocations and the multiplier ξ. Next, given ξ and {Zt, Gt},
the conditions above characterize {qt, Xt, ιt} and (16) defines {Ht}. Finally, we back out policies

{τh
t , Rt} from (12) and (17) statically, and inflation can be obtained from solving (14) dynamically.
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Figure 1 - Ramsey Steady-State in the Basic Model
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Notes : Ramsey steady-state policy and allocation as a function of θ with the ZLB constraint (solid line)

and without the ZLB constraint (dotted line).
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Table 1 - Simulation Results

(a) Price-Taking / Bargaining (θ = 1)

Variable Mean Std. Dev. Auto corr. Corr(x, Y ) Corr(x,Z) Corr(x,G)

π − 1 -1.987 0.240 0.805 0.722 0.999 0.005

τh 0.220 0 — — — —

R− 1 1.931 0 — — — —

q 0.798 0.036 0.806 0.723 1.000 0.005

X 1.664 0.020 0.806 0.723 1.000 0.005

H 2.065 0.028 0.874 0.554 -0.167 0.985

GDP 2.263 0.040 0.840 1 0.723 0.689

PDM/P 0.795 0 — — — —

(b) Bargaining (θ < 1)

Variable Mean Std. Dev. Auto corr. Corr(x,GDP ) Corr(x,Z) Corr(x, G)

π − 1 -3.844 0.236 0.805 0.681 0.999 0.005

τh 0.277 0 — — — —

R− 1 0 0 — — — —

q 0.573 0.017 0.806 0.683 1.000 0.005

X 1.287 0.015 0.806 0.683 1.000 0.005

H 1.688 0.028 0.874 0.600 -0.166 0.985

GDP 2.024 0.038 0.844 1 0.683 0.729

PDM/P 1.173 0 — — — —

Notes: Simulation-based moments. Inflation and nominal interest rate reported in percentage points.
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Table 2 - Volatility of Ramsey Policies and Allocations

Model Mt/Pt Bt−1/Pt−1 GDPt Ht πt Long-run π

CCK, quasi-linear preferences 1.03 0.008 2.18 1.13 3.240 -3.97

Baseline model (η = 0.27) 4.45 0.032 1.78 1.39 0.265 -2.20

Model with η = 1 1.18 0.026 1.57 1.37 0.277 2.60

Model with η = 2 0.59 0.026 1.51 1.33 0.294 9.10

Model with η = 5 0.24 0.027 1.42 1.26 0.330 22.0

Notes: Simulation-based volatilities of key Ramsey policy and allocation variables. All volatilities reported

in terms of percentage standard deviations, except end-of-period bond obligations and inflation, which are

reported as absolute standard deviations. Inflation statistics reported in percentage points.
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