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Abstract. We confront a variety of medium-scale regime-switching DSGE mod-
els against U.S. macroeconomic time series data. Our goal is to employ a uni�ed
Bayesian framework for these models to test empirical evidence of regime changes
in the Federal Reserve's in�ation target in the post-war period when heteroscedastic
shock disturbances are properly taken into account.

I. Introduction

This paper aims to contribute to a recently active line of research that analyzes the
evolution of monetary policy and its potential e�ects on the economy. Using a small
DSGE model, Clarida, Galí, and Gertler (2000), Lubik and Schorfheide (2004), and
Boivin and Giannoni (2006), among others, �nd that the U.S. monetary policy rule has
switched signi�cantly for the better from the pre-Volcker regime to the post-Volcker
regime. On the other hand, Stock and Watson (2003) report that it is hard to detect
direct evidence of changes in reduced-form coe�cients in their loosely parameterized
time-series models. In line with the �nding by Stock and Watson (2003), Canova
and Gambetti (2004), Cogley and Sargent (2005), and Primiceri (2005) also document
small drifts in their vector autoregression (VAR) coe�cients. By explicitly identifying
di�erent monetary policy regimes, moreover, Sims and Zha (2006) �nd that once het-
eroscedasticity in shock variances is properly accounted for, the data no longer favor
changes in monetary policy or changes in other parts of the economy.1
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The Sims and Zha (2006) results lend support to a vast amount of monetary policy
research using dynamic stochastic general equilibrium (DSGE) models based on the
assumption that the response coe�cients in the monetary policy rule remain constant
over time. Their results suggest that if one allows for a richer, more loosely parameter-
ized structure, the model is less likely to favor changes in U.S. monetary policy. Indeed,
Smets and Wouters (2007) and Justiniano and Primiceri (2006) use DSGE models (that
are considerably larger than a standard small DSGE model) to show that there is little
evidence of changes in the response coe�cients in U.S. monetary policy by splitting
the sample into two sub-samples, the pre-Volcker and post-Volcker periods. Arguably,
a splitting of the sample ignores the expectation e�ects that agents anticipate future
changes in monetary policy. In a recent work, however, Liu, Waggoner, and Zha (2007)
show that if one allows economic agents in a DSGE model to take changes in the policy
coe�cients into account in their expectation formation, it is even harder to obtain the
e�ects of such policy changes on macroeconomic volatility.

While all these �ndings support the assumption that the response coe�cients in
monetary policy have not changed much, it does not mean that monetary policy has
not changed in other forms. In an important paper, Schorfheide (2005) �nds strong
evidence of regime switches in the U.S. in�ation target even if variances of policy shocks
are allowed to change regimes. Furthermore, he shows that by allowing regime switches
in the target, the probability for the estimated in�ation coe�cient in the Taylor rule
to lie below one (corresponding to a dovish monetary policy regime) is less than 10%.
Since the work of Schorfheide (2005) is based on a simple, small DSGE model, a crucial
question is whether his �ndings continue to hold when one allows for a richer structure
in DSGE modeling. If regime switches in the in�ation target turn out to be empirically
important in a larger DSGE model, one needs to take explicit account of such changes.

To this end, we study a large set of variations of our DSGE model by accomplishing
a sequence of three tasks. First, we construct a medium-scale DSGE model along
the line of Altig, Christiano, Eichenbaum, and Linde (2004) and Smets and Wouters
(2007). We choose such a medium-scale model over the small-scale New-Keynesian
model commonly used in the literature because it pushes the limits of usefulness of
DSGE modeling and such a medium-scale model seems necessary to �t the data well
(Guerron-Quintana, 2007). Second, we extend our constant-parameter DSGE model
by allowing shock variances to follow a Markov-switching process. A recent work by
Justiniano and Primiceri (2006) introduces time-varying shock volatilities into a DSGE
model and �nds an important role of volatility changes in explaining the reduction of
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macroeconomic volatility. Third, we allow the in�ation target to switch regime over
time in addition to heteroblastic shock variances. As implied by Schorfheide (2005),
with the in�ation target switching regime, the model is likely to rely less on shock
volatilities to generate the 1970s observations of the dynamics of in�ation, output,
and other macroeconomic variables.2 Unlike Sims and Zha (2006) where the number
of policy coe�cients is relatively large, our way of modeling policy changes gives a
tightly parameterized model that has the best potential to �nd the importance of
policy changes in the presence of heteroscedastic variances if it exists.

We believe that this line of research represents a necessary and important step to
understand both the nature of disturbances responsible for changes in macroeconomic
volatility and the source of changes in monetary policy. It also helps to resolve the
uncertainty about the importance of regime changes in the in�ation target in light of
the work by Schorfheide (2005). Above all, it enables us to study all these models in a
uni�ed, coherent Bayesian framework in which each model is evaluated by its marginal
likelihood. Our framework is �exible because regime switches can apply to shock vari-
ances and in�ation targets simultaneously or we can let a regime-switching process for
variances be modeled independently of a regime-switching process for targets, as shown
by Sims, Waggoner, and Zha (2006). We can also make a regime switch permanent
(by making one of the regimes an absorbing state) to test for evidence of a once-for-all
change in the in�ation target or in shock variances or both.

While our framework is �exible, the resulting models are complex and push the limits
of what our computational and analytical capacity can handle. The posterior density
function is extremely non-Gaussian, making it di�cult to �nd the posterior peak. The
posterior peak in turn is important as a starting point for initializing an e�cient MCMC
algorithm. The results we report in this draft of the paper are incomplete at this stage,
because of the extended computing time required by our analysis.

Nonetheless, our preliminary results so far show that allowing for such heteroscedas-
ticity in shock variances improves the model's �t considerably, as found in Sims and
Zha (2006). We measure this improvement by likelihood (multiplied by the prior) val-
ues. We report our results and point out some identi�cation issues related to DSGE
models.

2Econometrically, Choi (2002) and Beyer and Farmer (2005) argue that allowing regime shifts can
potentially aid identi�cation of other parameters in the model.



HAS THE FEDERAL RESERVE'S INFLATION TARGET CHANGED? 4

II. Relation to Other Literature

There are two strands of literature that are relevant to our work. One strand is
related to medium-scale DSGE modelling with no regime switching. Besides the works
discussed in Introduction, works by Levin, Onatski, Williams, and Williams (2006)
and Del Negro, Schorfheide, Smets, and Wouters (2007) o�er a useful reference for the
estimates of some key parameters in a DSGE monetary model.

The other strand emphasizes changes in the in�ation target as a representation of
important shifts in the conduct of U.S. monetary policy. Favero and Rovelli (2003)
estimate a three-equation New Keynesian macroeconomic model and detect a one-
time shift in the in�ation target around 1979 when Volcker became the Chairman of
the Federal Reserve System. Such a one-time shift represents a permanent regime
switch in the in�ation target process, corresponding to a special (degenerate) case of
the regime-switching process studied in our paper. Erceg and Levin (2003) studies the
implications of agents' inability to disentangle persistent and transitory shifts in the
Federal Reserve's in�ation target on the dynamics of in�ation and output following
the Volcker disin�ation. Ireland (2005) estimates a small New Keynesian monetary
model to draw inferences about the dynamic behaviors of the Federal Reserve's in-
�ation target and detects evidence of substantial time variations in the unobserved
target in�ation rate. All these studies assume that shock variances remain constant
over time and there is no econometric study of how important changes in the target
are relative to shock volatilities in explaining the time series of macroeconomic vari-
ables. For reasons of feasibility and tractability, we follow these works and take regime
changes in the in�ation target as an exogenous process.3 Unlike these works, however,
we study a variety of medium-scale DSGE models to determine whether the Federal
Reserve's in�ation target in the post-war period has switched regimes in the presence
of heteroscedastic disturbances.

III. The Model

The model economy is populated by a continuum of households, each endowed with
a unit of di�erentiated labor skill indexed by i ∈ [0, 1]; and a continuum of �rms, each
producing a di�erentiated good indexed by j ∈ [0, 1]. The monetary authority follows
a feedback interest rate rule, under which the nominal interest rate is set to respond to

3One exception is Sargent, Williams, and Zha (2006) who derive changes in the in�ation target
endogenously in the context of a learning and escape model where the central bank has a misspeci�ed
model.
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its own lag and deviations of in�ation and output from their targets. The policy regime
st represented by the time-varying in�ation target switches between a �nite number of
regimes contained in the set S, with the Markov transition probabilities summarized
by the matrix Q = [qij], where qij = Prob(st+1 = i|st = j) for i, j ∈ S. The economy
is bu�eted by several sources of shocks. The variance of each shock switches between
a �nite number of regimes denoted by s∗t ∈ S∗ with the transition matrix Q∗ = [q∗ij].

III.1. The aggregation sector. The aggregation sector produces a composite labor
skill denoted by Lt to be used in the production of each type of intermediate goods and a
composite �nal good denoted by Yt to be consumed by each household. The production
of the composite skill requires a continuum of di�erentiated labor skills {Lt(i)}i∈[0,1]

as inputs, and the production of the composite �nal good requires a continuum of
di�erentiated intermediate goods {Yt(j)}j∈[0,1] as inputs. The aggregation technologies
are given by

Lt =

[∫ 1

0

Lt(i)
1

µwt di

]µwt

, Yt =

[∫ 1

0

Yt(j)
1

µpt dj

]µpt

, (1)

where µwt and µpt determine the elasticity of substitution between the skills and be-
tween the goods, respectively. Following Smets and Wouters (2007), we assume that

ln µwt = (1− ρw) ln µw + ρw ln µw,t−1 + σwtεwt − φwσw,t−1εw,t−1 (2)

and that
ln µpt = (1− ρp) ln µp + ρp ln µp,t−1 + σptεpt − φpσp,t−1εp,t−1, (3)

where, for j ∈ {w, p}, ρj ∈ (−1, 1) is the AR(1) coe�cient, φj is the MA(1) coe�cient,
σjt ≡ σj(s

∗
t ) is the regime-switching standard deviation, and εjt is an i.i.d. white noise

process with a zero mean and a unit variance. We interpret µwt and µpt as the wage
markup and price markup shocks.

The representative �rm in the aggregation sector faces perfectly competitive markets
for the composite skill and the composite good. The demand functions for labor skill
i and for good j resulting from the optimizing behavior in the aggregation sector are
given by

Ld
t (i) =

[
Wt(i)

W̄t

]− µwt
µwt−1

Lt, Y d
t (j) =

[
Pt(j)

P̄t

]− µpt
µpt−1

Yt, (4)

where the wage rate W̄t of the composite skill is related to the wage rates {Wt(i)}i∈[0,1]

of the di�erentiated skills by W̄t =
[∫ 1

0
Wt(i)

1/(1−µwt)di
]1−µwt

and the price P̄t of the
composite good is related to the prices {Pt(j)}j∈[0,1] of the di�erentiated goods by
P̄t =

[∫ 1

0
Pt(j)

1/(1−µpt)dj
]1−µpt

.
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III.2. The intermediate good sector. The production of a type j good requires
labor and capital inputs. The production function is given by

Yt(j) = ZtK
f
t (j)α1 [λt

zL
f
t (j)]

α2 , (5)

where Kf
t (j) and Lf

t (j) are the inputs of capital and the composite skill, and λz is the
growth rate of the labor-augmenting technological change. The variable Zt denotes a
neutral technology shock, which follows a stationary process

ln Zt = (1− ρz) ln Z + ρz ln Zt−1 + σztεzt, (6)

where ρz ∈ (−1, 1) measures the persistence, σzt ≡ σz(s
∗
t ) denotes the regime-switching

standard deviation, and εzt is an i.i.d. white noise process with a zero mean and a
unit variance. The parameters α1 and α2 measure the cost shares the capital and
labor inputs. Following Chari, Kehoe, and McGrattan (2000), we introduce some real
rigidity by assuming the existence of some �rm-speci�c factors (such as land), so that
α1 + α2 ≤ 1.

Each �rm in the intermediate-good sector is a price-taker in the input market and
a monopolistic competitor in the product market where it sets a price for its product,
taking the demand schedule in (4) as given. We follow Calvo (1983) and assume
that pricing decisions are staggered across �rms. The probability that a �rm cannot
adjust its price is given by ξp. Following Woodford (2003), CEE (2005), and Smets
and Wouters (2007), we allow a fraction of �rms that cannot re-optimize their pricing
decisions to index their prices to the overall price in�ation realized in the past period.
Speci�cally, if the �rm j cannot set a new price, its price is automatically updated
according to

Pt(j) = π
γp

t−1π
1−γpPt−1(j), (7)

where πt = P̄t/P̄t−1 is the in�ation rate between t − 1 and t, π is the steady-state
in�ation rate, and γp measures the degree of indexation.

A �rm that can renew its price contract chooses Pt(j) to maximize its expected
discounted dividend �ows given by

Et

∞∑
i=0

ξi
pDt,t+i[Pt(j)χ

p
t,t+iY

d
t+i(j)− Vt+i(j)], (8)

where Dt,t+i is the period-t present value of a dollar in a future state in period t + i,
Vt+i(j) is the cost function, and the term χp

t,t+i comes from the price-updating rule (7)
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and is given by

χp
t,t+i =

{
Πi

k=1π
γp

t+k−1π
1−γp if i ≥ 1

1 if i = 0.
(9)

In maximizing its pro�t, the �rm takes as given the demand schedule Y d
t+i(j) =

(
Pt(j)χ

p
t,t+i

P̄t+i

)− µp,t+i
µp,t+i−1

Yt+i. The �rst order condition for the pro�t-maximizing problem
yields the optimal pricing rule

Et

∞∑
i=0

ξi
pDt,t+iY

d
t+i(j)

1

µp,t+i − 1

[
µp,t+iΦt+i(j)− Pt(j)χ

p
t,t+i

]
= 0, (10)

where Φt+i(j) = ∂Vt+i(j)/∂Y d
t+i(j) denotes the marginal cost function. In the absence

of markup shocks, µpt would be a constant and (10) implies that the optimal price is
a markup over an average of the marginal costs for the periods in which the price will
remain e�ective. Clearly, if ξp = 0 for all t, that is, if prices are perfectly �exible, then
the optimal price would be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

Φt(j) =

[
α̃

Zt

(P̄trkt)
α1

(
W̄t

λt
z

)α2
] 1

α1+α2

Yt(j)
1

α1+α2
−1

, (11)

where α̃ ≡ α−α1
1 α−α2

2 and rkt denotes the real rental rate of capital input. The condi-
tional factor demand functions imply that

W̄t

P̄trkt

=
α2

α1

Kf
t (j)

Lf
t (j)

, ∀j ∈ [0, 1]. (12)

III.3. Households. There is a continuum of households, each endowed with a di�eren-
tiated labor skill indexed by h ∈ [0, 1]. Household h derives utility from consumption
and leisure. We assume that there exists �nancial instruments that provide perfect
insurance for the households in di�erent wage-setting cohorts, so that the households
make identical consumption and investment decisions despite that their wage incomes
may di�er due to staggered wage setting.4 In what follows, we impose this assumption
and omit the household index for consumption and investment.

4To obtain complete risk-sharing among households in di�erent wage-setting cohorts does not rely
on the existence of such (implicit) �nancial arrangements. As shown by Huang, Liu, and Phaneuf
(2004), the same equilibrium dynamics can be obtained in a model with a representative household
(and thus complete insurance) consisting of a large number of worker members. The workers supply
their homogenous labor skill to a large number of employment agencies, who transform the homogenous
skill into di�erentiated skills and set nominal wages in a staggered fashion.
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The utility function for household h ∈ [0, 1] is given by

E
∞∑

t=0

βtAt

{
ln(Ct − bCt−1)− Ψ

1 + η
Lt(h)1+η

}
, (13)

where β ∈ (0, 1) is a subjective discount factor, Ct denotes consumption, Lt(h) denotes
hours worked, η > 0 is the inverse Frish elasticity of labor hours, and b measures the
importance of habit formation. The variable At denotes a preference shock, which
follows the stationary process

ln At = (1− ρa) ln A + ρa ln At−1 + σatεat, (14)

where ρa ∈ (−1, 1) is the persistence parameter, σat ≡ σa(s
∗
t ) is the regime-switching

standard deviation, and εat is an i.i.d. white noise process with a zero mean and a unit
variance.

In each period t, the household faces the budget constraint

P̄tCt +
P̄t

Qt

[It + a(ut)Kt−1] + EtDt,t+1Bt+1 ≤

Wt(h)Ld
t (h) + P̄trktutKt−1 + Πt + Bt + Tt. (15)

In the budget constraint, It denotes investment, Bt+1 is a nominal state-contingent
bond that represents a claim to one dollar in a particular event in period t + 1, and
this claim costs Dt,t+1 dollars in period t; Wt(h) is the nominal wage for h's labor skill,
Kt−1 is the beginning-of-period capital stock, ut is the utilization rate of capital, Πt

is the pro�t share, and Tt is a lump-sum transfer from the government. The function
a(ut) captures the cost of variable capital utilization. Following Altig, Christiano,
Eichenbaum, and Linde (2004) and Christiano, Eichenbaum, and Evans (2005), we
assume that a(u) is increasing and convex. The term Qt denotes the investment-
speci�c technological change. Following Greenwood, Hercowitz, and Krusell (1997),
we assume that Qt contains a deterministic trend and a stochastic component. In
particular,

Qt = λt
qqt, (16)

where λq is the growth rate of the investment-speci�c technological change and qt is an
investment-speci�c technology shock, which follows a stationary process given by

ln qt = (1− ρq) ln q + ρq ln qt−1 + σqtεqt, (17)

where ρq ∈ (−1, 1) is the persistence parameter, σqt ≡ σq(s
∗
t ) is the regime-switching

standard deviation, and εqt is an i.i.d. white noise process with a zero mean and a unit
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variance. The importance of investment-speci�c technological change is also docu-
mented in Fisher (2006) and Fernandez-Villaverde and Rubio-Ramirez (Forthcoming).

The capital stock evolves according to the law of motion

Kt = (1− δ)Kt−1 + [1− S(It/It−1)] It, (18)

where δ ∈ (0, 1) denotes the depreciation rate of the capital stock. The function S(·)
represents the adjustment cost in capital accumulation. We assume that S(·) is convex
and satis�es S(λqλ∗) = S ′(λqλ∗) = 0, where λ∗ = (λα1

q λα2
z )

1
1−α1 .

The household takes prices and all wages but its own as given and chooses Ct, It, Kt,
ut, Bt+1, and Wt(h) to maximize (13) subject to (15) - (18), the borrowing constraint
Bt+1 ≥ −B for some large positive number B, and the labor demand schedule Ld

t (h)

described in (4).
The wage-setting decisions are staggered across households. In each period, a fraction

ξw of households cannot re-optimize their wage decisions and, among those who cannot
re-optimize, a fraction γw of them index their nominal wages to the price in�ation
realized in the past period. In particular, if the household h cannot set a new nominal
wage, its wage is automatically updated according to

Wt(h) = πγw

t−1π
1−γwλ∗Wt−1(h). (19)

If a household h ∈ [0, 1] can re-optimize its nominal wage-setting decision, it chooses
W (h) to maximize the utility subject to the budget constraint (15) and the labor
demand schedule in (4). The optimal wage-setting decision implies that

Et

∞∑
i=0

ξi
wDt,t+iL

d
t+i(h)

1

µw,t+i − 1
[µw,t+iMRSt+i(h)−Wt(h)χw

t,t+i] = 0, (20)

where MRSt(h) denotes the marginal rate of substitution between leisure and income
for household h and χw

t,t+i is de�ned as

χw
t,t+i ≡

{
Πi

k=1π
γw

t+k−1π
1−γwλi

∗ if i ≥ 1

1 if i = 0.
(21)

In the absence of wage-markup shocks, µwt would be a constant and (20) implies that
the optimal wage is a constant markup over a weighted average of the marginal rate
of substitution for the periods in which the nominal wage remains e�ective. If ξw = 0,
then the nominal wage adjustments are �exible and (20) implies that the nominal wage
is a markup over the contemporaneous marginal rate of substitution.
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The optimal choice of bond holdings leads to the equilibrium relation

Dt,t+1 = β
At+1Uc,t+1

AtUct

P̄t

P̄t+1

, (22)

where Uct denotes the marginal utility of consumption. This equation states that the
intertemporal marginal rate of substitution equals the price of the state contingent
bond. The return to the risk-free nominal bond, that is, the nominal interest rate is
then given by Rt = [EtDt,t+1]

−1. It follows from (22) that

1 = βEt

[
At+1Uc,t+1

AtUct

Rt

πt+1

]
, (23)

which is the intertemporal Euler equation for the risk-free nominal bond.
The optimal investment decision is described by

AtUct

Qt

= qkt [1− S(λIt)− λItS
′(λIt)] + βEtqk,t+1S

′(λI,t+1)λ
2
I,t+1, (24)

where λIt = It/It−1 and qkt is the Lagrangian multiplier of the law of motion of capital
stock (18). The left hand side of the equation gives the marginal value of consuming
a unit of the �nal good (in terms of investment goods). The right hand side of the
equation gives the marginal value of investing the unit, which consists of the value of
the increased level of new capital net of adjustment cost and the expected present value
of reduced adjustment cost in the next period for having more capital in place.

The optimal capital accumulation rule is described by

qkt = β(1− δ)Etqk,t+1 + βEtUc,t+1

[
rk,t+1ut+1 − a(ut+1)

Qt+1

]
. (25)

The cost of acquiring an extra unit of capital is qkt today. The bene�t of having this
extra unit of capital consists of the discounted expected future re-sale value and the
rental value net of utilization cost.

The optimal choice of capital utilization rate is described by

a′(ut)

Qt

= rkt, (26)

which equates the marginal cost (the left hand side) and the marginal bene�t (the right
hand side) of increased utilization rate.

III.4. The government and monetary policy. The government follows a Ricardian
�scal policy, with its spending �nanced by lump-sum taxes so that P̄tGt = Tt, where
Gt denotes the government spending in �nal consumption units. We assume that the
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detrended government spending G̃t ≡ Gt

λ∗t follows a stationary stochastic process given
by

ln G̃t = (1− ρg) ln G̃ + ρg ln G̃t−1 + σgtεgt + ρgzσztεzt, (27)

where we follow Smets and Wouters (2007) and assume that the government spending
shock responds to productivity shocks.

Monetary policy is described by a feedback interest rate rule that allows the possi-
bility of regime switching in the in�ation target. The interest rate rule is given by

Rt = κRρr

t−1

[(
πt

π∗(st)

)φπ

Ỹ
φy

t

]1−ρr

eσrtεrt , (28)

where Rt = [EtDt,t+1]
−1 denotes the nominal interest rate, π∗(st) denotes the regime-

dependent in�ation target, and Ỹt = Yt/λ
t
∗ denotes the detrended output. The constant

terms κ, ρr, φπ, and φy are policy parameters. The term εrt denotes the monetary policy
shock, which follows an i.i.d. normal process with a zero mean and a unit variance. The
term σrt ≡ σr(s

∗
t ) is the regime-switching standard deviation of the monetary policy

shock. We assume that the seven shocks εwt, εpt, εzt, εqt, εat, εrt, and εgt are mutually
independent.

III.5. Market clearing and equilibrium. In equilibrium, markets for bond, com-
posite labor, capital stock, and composite goods all clear. Bond market clearing implies
that Bt = 0 for all t. Labor market clearing implies that

∫ 1

0
Lf

t (j)dj = Lt. Capital
market clearing implies that

∫ 1

0
Kf

t (j)dj = utKt−1. Composite goods market clearing
implies that

Ct +
1

Qt

[It + a(ut)Kt−1] + Gt = Yt, (29)

where aggregate output is related to aggregate primary factors through the aggregate
production function

GptYt = Zt(utKt−1)
α1(λt

zLt)
α2 , (30)

with Gpt ≡
∫ 1

0

(
Pt(j)

P̄t

)− µpt
µpt−1

1
α1+α2 dj measuring the price dispersion.

Given �scal and monetary policy, an equilibrium in this economy consists of prices
and allocations such that (i) taking prices and all nominal wages but its own as given,
each household's allocation and nominal wage solve its utility maximization problem;
(ii) taking wages and all prices but its own as given, each �rm's allocation and price
solve its pro�t maximization problem; (iii) markets clear for bond, composite labor,
capital stock, and �nal goods.
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IV. Equilibrium Dynamics

IV.1. Stationary equilibrium and the deterministic steady state. We focus on
a stationary equilibrium with balanced growth. On a balanced growth path, output,
consumption, investment, capital stock, and the real wage all grow at constant rates,
while hours remain constant. Further, in the presence of investment-speci�c techno-
logical change, investment and capital grow at a faster rate. To induce stationarity, we
transform variables so that

Ỹt =
Yt

λt∗
, C̃t =

Ct

λt∗
, w̃t =

Wt

P̄tλt∗
, Ĩt =

It

Qtλt∗
, K̃t =

Kt

Qtλt∗
.

Along the balanced growth path, as noted by Greenwood, Hercowitz, and Krusell
(1997), the real rental price of capital keeps falling since the capital-output ratio keeps
rising. The rate at which the rental price is falling is given by λq. Thus, the transformed
variable r̃kt = rktQt, that is, the rental price in consumption unit, is stationary. Further,
since consumption is growing at the rate λ∗, the marginal utility of consumption is
declining at the same rate, so we de�ne Ũct = Uctλ

t
∗ to induce stationarity.

The steady state in the model is the stationary equilibrium in which all shocks are
shut o�, including the �regime shocks� to the in�ation target. To derive the steady
state, we represent the �nite Markov switching process with a vector AR(1) process
(Hamilton, 1994). Speci�cally, the in�ation target can be written as

π∗(st) = [π∗(1), π∗(2)]est , (31)

where π∗(j) is the in�ation target in regime j ∈ {1, 2} and

est =

[
1{st = 1}
1{st = 2}

]
, (32)

with 1{st = j} = 1 if st = j and 0 otherwise. As shown in Hamilton (1994), the
random vector est follows an AR(1) process:

est = Qest−1 + vt, (33)

where Q is the transition matrix of the Markov switching process and the innovation
vector has the property that Et−1vt = 0. In the steady state, vt = 0 so that (33)
de�nes the ergodic probabilities for the Markov process and, from (31), the steady-
state in�ation π is the ergodic mean of the in�ation target. Given π, the derivations
for the rest of the steady-state equilibrium conditions are straightforward, as we show
in Appendix C.
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IV.2. Linearized equilibrium dynamics. To solve for the equilibrium dynamics,
we log-linearize the equilibrium conditions around the deterministic steady state. We
use a hatted variable x̂t to denote the log-deviations of the stationary variable Xt from
its steady-state value (i.e., x̂t = ln(Xt/X)).

Linearizing the optimal pricing decision rule implies that

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp

(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (34)

where κp ≡ (1−βξp)(1−ξp)

ξp
, ᾱ ≡ 1−α1−α2

α1+α2
, and

m̂ct =
1

α1 + α2

[α1(r̂kt − q̂t) + α2ŵt − ẑt] + ᾱŷt. (35)

This is the standard price Phillips-curve relation generalized to allow for partial dy-
namic indexation. In the special case without indexation (i.e., γp = 0), this relation
reduces to the standard forward-looking Phillips curve relation, under which the price
in�ation depends on the current-period real marginal cost and the expected future in-
�ation. In the presence of dynamic indexation, the price in�ation also depends on its
own lag.

Linearizing the optimal wage-setting decision rule implies that

ŵt−ŵt−1+ π̂t−γwπ̂t−1 =
κw

1 + ηθw

(µ̂wt+m̂rst−ŵt)+βEt[ŵt+1−ŵt+π̂t+1−γwπ̂t], (36)

where ŵt denotes the log-deviations of the real wage, m̂rst = ηl̂t − Ûct denotes the
marginal rate of substitution between leisure and consumption, and κw ≡ (1−βξw)(1−ξw)

ξw

is a constant. To help understand the economics of this equation, we rewrite it as

π̂w
t − γwπ̂t−1 =

κw

1 + ηθw

(µ̂wt + m̂rst − ŵt) + βEt(π̂
w
t+1 − γwπ̂t), (37)

where π̂w
t = ŵt − ŵt−1 + π̂t denotes the nominal wage in�ation. This nominal-wage

Phillips curve relation parallels that of the price-Phillips curve and has similar inter-
pretations.

The rest of the linearized equilibrium conditions are summarized below:

q̂kt = S ′′(λI)λ
2
I

[
∆ît + ∆q̂t − βEt[∆ît+1 + ∆q̂t+1]

]
, (38)

q̂kt = Et

{
∆ât+1 + ∆Ûc,t+1 −∆q̂t+1 +

β

λI

[(1− δ)q̂k,t+1 + r̃kr̂k,t+1]

}
, (39)

r̂kt = σuût, (40)

0 = Et

[
∆ât+1 + ∆Ûc,t+1 + R̂t − π̂t+1

]
, (41)

k̂t =
1− δ

λI

[k̂t−1 + q̂t−1 − q̂t] +

(
1− 1− δ

λI

)
ît, (42)
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ŷt = cy ĉt + iy ît + uyût + gyĝt, (43)

ŷt = ẑt + α1[k̂t−1 + ût + q̂t−1] + α2l̂t, (44)

ŵt − r̂kt = k̂t−1 + ût + q̂t−1 − q̂t − l̂t, (45)

where (38) is the linearized investment decision equation with q̂kt denoting the shadow
value of existing capital (i.e., Tobin's Q) and the ∆ denoting the �rst-di�erence operator
(so that ∆xt = xt − xt−1); (39) is the linearized capital Euler equation; (40) is the
linearized capacity utilization decision equation with σu ≡ a′′(1)

a′(1)
denoting the curvature

the function a(u) evaluated at the steady state; (41) is the linearized bond Euler
equation; (42) is the linearized law of motion for the capital stock; (43) is the linearized
aggregate resource constraint, with the steady-state ratios given by cy = C̃

Ỹ
, iy = Ĩ

Ỹ
,

uy = 1
λqλ∗

r̃kK̃

Ỹ
, and gy = G̃

Ỹ
; (44) is the linearized aggregate production function; and

(45) is the linearized factor demand relation.
Finally, the linearized interest rate rule is given by

R̂t = ρrR̂t−1 + (1− ρr)
[
φπ(π̂t − π̂∗(st)) + φyŷt

]
+ σrtεrt, (46)

where the term π̂∗(st) ≡ log π∗(st)− log π denotes the deviations of the in�ation target
from its ergodic mean. To compute the equilibrium dynamics, we use the relation that

π̂∗(st) = [π̂∗(1), π̂∗(2)]est ,

where the vector est is de�ned in (32) and follows a vector AR(1) process described in
(33).

V. Estimation Approach

We estimate the parameters in our model using the Bayesian method. We describe a
general empirical strategy so that the method can be applied to other regimes-switching
DSGE models. As shown in the appendices, our model contains 26 variables. Adding
the four lagged variables ŷt−1, ĉt−1, ît−1, and ŵt−1 to the list gives a total of 30 variables.
We denote all these state variables by the vector ft where ft is so arranged that the �rst
9 variables are ŷt, ĉt, ît, ŵt, π̂t, ˆ̀

t, R̂t, k̂t, and q̂t and the last 4 variables are ŷt−1, ĉt−1, ît−1,
and ŵt−1. The solution to our DSGE model leads to the following VAR(1) form of state
equations

ft = c(st, st−1) + Fft−1 + C(s∗t )εt, (47)

where εt = [εrt, εpt, εwt, εgt, εzt, εat, εqt]
′, and c(st, st−1) is a vector function of the

in�ation target π∗(st), the previous regime st−1, and the transition matrix Q, and
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C(s∗t ) is a matrix function of σrt(s
∗
t ), σpt(s

∗
t ), σwt(s

∗
t ), σgt(s

∗
t ), σzt(s

∗
t ), σat(s

∗
t ), and

σqt(s
∗
t ).

It follows from (47) that the solution to our DSGE model depends on the composite
regime (st, st−1, s

∗
t ). If s∗t is assumed to be the same as st (see Schorfheide (2005)),

then the composite regime collapses to (st, st−1). To simply our notation and make an
analytical exposition tractable, we use st to represent a composite regime that includes
(st, st−1, s

∗
t ) as a special case for the rest of this section.

Our estimation is based on the time-series observations on seven U.S. aggregate
variables: real per capita GDP (Y Data

t ), real per capita consumption (CData
t ), real per

capita investment (IData
t ), real wage (wData

t ), the quarterly GDP-de�ator in�ation rate
(πData

t ), per capita hours (LData
t ), and the (annualized) federal funds rate (FFRData

t ).
These data are related to the model through the following vector of observable variables:

yt =




∆ ln Y Data
t

∆ ln CData
t

∆ ln IData
t

∆ ln wData
t

ln πData
t

ln LData
t

FFRData
t

400




.

The observable vector is connected to the model (state) variables through the measure
equations

yt = a + Hft,

where
The vector a and matrix H are

a =




ln λ∗
ln λ∗
ln λ∗
ln λ∗
ln π

ln L

ln R




, H =


 I

7×7
0

7×19


− I

4×4

0
3×4





 . (48)

For the rest of this section, we describe our empirical strategy in general terms so
that the method can be applied to other DSGE models.
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V.1. General setup for estimation. Consider a regime-switching DSGE model with
st following a Markov-switching process. Let θ be a vector of all the model parameters
except the transition matrix for st. Let yt be an n×1 vector of observable variables. In
our case, n = 7. The vector yt is connected to the state vector ft through (48). For our
regime-switching DSGE model, this state-space representation implies a non-standard
Kalman-�lter problem as discussed in Kim and Nelson (1999).

Let (Yt, θ, Q, St) be a collection of random variables where

Yt = (y1, · · · , yt) ∈ (Rn)t ,

θ = (θi)i∈H ∈ (Rr)h ,

Q = (qi,j)(i,j)∈H×H ∈ Rh2 ,

St = (s0, · · · , st) ∈ H t+1,

ST
t+1 = (st+1, · · · , sT ) ∈ HT−t,

and H is a �nite set with h elements and is usually taken to be the set {1, · · · , h}.
Because st represents a composite regime, h can be greater than the actual number
of regimes at time t. The matrix Q is the Markov transition matrix and qi,j is the
probability that st is equal to i given that st−1 is equal to j. The matrix Q is restricted
to satisfy

qi,j ≥ 0 and
∑
i∈H

qi,j = 1.

The object θ is a vector of all the model parameters except the elements in Q. The
object St represents a sequence of unobserved regimes or states. We assume that
(Yt, θ, Q, St) has a joint density function p (Yt, θ, Q, St), where we use the Lebesgue
measure on (Rn)t × (Rr)h × Rh2 and the counting measure on H t+1. This density
satis�es the following key condition.

Condition 1.
p (st | Yt−1, θ, Q, St−1) = qst,st−1

for t > 0.

V.2. Propositions for Hamilton �lter. Given p(yt | Yt−1, θ, Q, st) for all t, the
following propositions follow from Condition 1 (Hamilton, 1989; Chib, 1996; Sims,
Waggoner, and Zha, 2006).

Proposition 1.

p (st | Yt−1, θ, Q) =
∑

st−1∈H

qst,st−1p (st−1 | Yt−1, θ, Q)
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for t > 0.

Proposition 2.

p (st | Yt, θ, Q) =
p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)∑

st−1∈H p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

for t > 0.

Proposition 3.

p (st | Yt, θ, Q, st+1) = p
(
st | YT , θ, Q, ST

t+1

)

for 0 ≤ t < T .

V.3. Likelihood. We follow the standard assumption in the literature that the initial
data Y0 is taken as given. Using Kim and Nelson (1999)'s Kalman-�lter updating
procedure, we obtain the conditional likelihood function at time t

p (yt | Yt−1, θ, Q, st) . (49)

It follows from the rules of conditioning that

p (yt, | Yt−1, θ, Q) =
∑
st∈H

p (yt, st | Yt−1, θ, Q)

=
∑
st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q) .

Using (49) and the above equation, one can show that the likelihood function of YT is

p (YT | θ,Q) =
T∏

t=1

p (yt | Yt−1, θ, Q)

=
T∏

t=1

[∑
st∈H

p (yt | Yt−1, θ, Q, st) p (st | Yt−1, θ, Q)

]
.

(50)

We assume that p (s0 | Y0, θ, Q) = 1
h
for every s0 ∈ H.5 Given this initial condition,

the likelihood function (50) can be evaluated recursively, using Propositions 1 and 2.

5The conventional assumption for p (s0 | θ, Q) is the ergodic distribution of Q, if it exists. This
convention, however, precludes the possibility of allowing for an absorbing regime or state.
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V.4. Posterior distributions. The prior for all the parameters is denoted by p (θ, Q),
which will be discussed further in Section V.7. By the Bayes rule, it follows from (50)
that the posterior distribution of (θ, Q) is

p(θ, Q | YT ) ∝ p(θ,Q)p(YT | θ, Q). (51)

The posterior density p(θ,Q | YT ) is unknown and complicated; the Monte Carlo
Markov Chain (MCMC) simulation directly from this distribution can be ine�cient
and problematic. One can, however, use the idea of Gibbs sampling to obtain the
empirical joint posterior density p(θ,Q, ST | YT ) by sampling alternately from the
following conditional posterior distributions:

p(ST | YT , θ, Q),

p(Q | YT , ST , θ),

p(θ | YT , Q, ST ).

One can use the Metropolis-Hastings sampler to sample from the conditional posterior
distributions p(θ | YT , Q, ST ) and p(Q | YT , ST , θ). To simulate from the distribution
p(ST | YT , θ, Q), we can see from the rules of conditioning that

p (ST | YT , θ, Q) = p (sT | YT , θ, Q) p
(
ST−1 | YT , θ, Q, ST

T

)

= p (sT | YT , θ, Q)
T−1∏
t=0

p
(
st | YT , θ, Q, ST

t+1

) (52)

where ST
t+1 = {st+1, · · · , sT}. From Proposition 3,

p
(
st | YT , θ, Q, ST

t+1

)
= p (st | Yt, θ, Q, st+1)

=
p (st, st+1 | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
p (st+1 | Yt, θ, Q, st) p (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)

=
qst+1,stp (st | Yt, θ, Q)

p (st+1 | Yt, θ, Q)
.

(53)

The conditional density p
(
st | YT , ZT , θ, Q, ST

t+1

)
is straightforward to evaluate accord-

ing to Propositions 1 and 2.
To draw ST , we use the backward recursion by drawing the last state sT from the

terminal density p(sT |YT , θ, Q) and then drawing st recursively given the path ST
t+1

according to (53). It can be seen from (52) that draws of ST this way come from
Pr(ST |YT , θ).
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V.5. Marginal posterior density of st. The smoothed probability of st given the
values of the parameters and the data can be evaluated through backward recursions.
Starting with sT and working backward, we can calculate the probability of st condi-
tional on YT , θ, Q by using the following fact

p (st | YT , θ, Q) =
∑

st+1∈H

p (st, st+1 | YT , θ, Q)

=
∑

st+1∈H

p (st | YT , θ, Q, st+1) p (st+1 | YT , θ, Q)

where p (st | Yt, θ, Q, st+1) can be evaluated according to (53).

V.6. The model's �t. To evaluate the model's �t to the data and compare it to the
�t of other models, one wishes to compute the marginal data density implied by the
model. The marginal data density is de�ned as

p(YT ) =

∫
p(YT | θ, Q)p(θ) dθdQ, (54)

where p(YT | θ, Q) can be evaluated according to (50). For many empirical models, the
modi�ed harmonic mean (MHM) method of Gelfand and Dey (1994) is a widely used
method to compute the marginal data density. The MHM method used to approximate
(54) numerically is based on a theorem that states

p(YT )−1 =

∫

Θ

h(θ,Q)

p(YT | θ,Q)p(θ, Q)
p(θ,Q | YT )dθdQ, (55)

where Θ is the support of the posterior probability density and h(θ, Q), often called a
weighting function, is any probability density whose support is contained in Θ. Denote

m(θ, Q) =
h(θ,Q)

p(YT | θ,Q)p(θ, Q)
.

A numerical evaluation of the integral on the right hand side of (55) can be accom-
plished in principle through the Monte Carlo (MC) integration

p̂(YT )−1 =
1

N

N∑
i=1

m(θ(i), Q(i)), (56)

where (θ(i), Q(i)) is the ith draw of (θ, Q) from the posterior distribution p(θ,Q | YT ).
If m(θ, Q) is bounded above, the rate of convergence from this MC approximation is
likely to be practical.

Geweke (1999) proposes a Gaussian function for h(·) constructed from the posterior
simulator. The likelihood and posterior density functions for our large DSGE model
turn out to be quite non-Gaussian and there exist zeros of the posterior pdf in the
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interior points of the parameter space. In this case, the standard MHM procedure tends
to be unreliable as the MCMC draws are likely to be dominated by a few draws as the
number of draws increase. Sims, Waggoner, and Zha (2006) proposes a truncated non-
Gaussian weighting function for h(·) to remedy the problem. This weighting function
seems to work well for the non-Gaussian posterior density.

Because the posterior density function is very non-Gaussian and complicated in
shape, it is all the more important to �nd the posterior mode by maximizing the value
of (51). The estimate at the mode not only represents the most likely value (and
thus the posterior estimate) but also serves as a crucial starting point for initializing
di�erent chains of MCMC draws.

For various DSGE models studied in this paper, �nding the mode has proven to
be a computationally challenging task. The optimization method we use combines
the block-wise BFGS algorithm developed by Sims, Waggoner, and Zha (2006) and
various constrained optimization routines contained in the commercial IMSL package.
The block-wise BFGS algorithm, following the idea of Gibbs sampling and EM algo-
rithm, breaks the set of model parameters into subsets and uses Christopher A. Sims's
csminwel program to maximize the likelihood of one set of the model's parameters
conditional on the other sets.6 Maximization is iterated at each subset until it con-
verges. Then the optimization iterates between the block-wise BFGS algorithm and
the IMSL routines until it converges. The convergence criterion is the square root of
machine epsilon.

Thus far we have described the optimization process for only one starting point.7

Our experience is that without such a thorough search, one can be easily misled to a
much lower posterior value (e.g., a few hundreds lower in log value than the posterior
peak). We thus use a set of cluster computing tools described in Ramachandran,
Urazov, Waggoner, and Zha (2007) to search for the posterior mode. We begin with a
grid of 100 starting points; after convergence, we perturb each maximum point in both
small and large steps to generate additional 20 new starting points and restart the
optimization process again; the posterior estimates attain the highest posterior density
value. The other converged points typically have much lower likelihood values by at

6The csminwel program can be found on http://sims.princeton.edu/yftp/optimize/ .
7For the no-switching (constant-parameter) DSGE model, it takes a couple of hours to �nd the

posterior peak. While the model with two-regime shock variances takes about 20 hours to converge,
the model with two-regime in�ation targets and two-regime two-regime shock variances takes four
times longer.
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least a magnitude of hundreds of log values. For each DSGE model, the peak value of
the posterior kernel and the estimates at the mode are reported.

V.7. Prior distributions. We �x 3 parameters before estimating the model. We �x
the capital depreciation rate δ at 0.025 and the steady-state government spending to
output ratio gy at 0.18. As noted by Smets and Wouters (2007), these parameters
are di�cult to estimate unless capital stock and government spending are included
in the measurement equations (see also Justiniano and Primiceri (2006)). We also
normalize and �x the steady-state hours worked L at 1/3. We estimate all the remaining
parameters, including the steady-state wage markup µw, which is �xed in Smets and
Wouters (2007). Tables 1 and 2 summarize the prior distributions for the structural
parameters and the shock parameters.

Our choice of the prior means for the structural parameters reported in Table 1 is
primarily based on standard calibrations. We begin with the preference parameters
b, η, and β. In light of the calibration in Boldrin, Christiano, and Fisher (2001)
and Christiano, Eichenbaum, and Evans (2005), we set the prior mean for the habit
persistence parameter to 0.7 with a standard deviation of 0.2. We set the prior mean
of η to 2.0 with a standard deviation of 0.5. This value of η corresponds to a Frisch
labor elasticity of 0.5, which is commonly used in the standard calibration. We set
the prior mean of the subjective discount rate to 1.6% per annual, with a standard
deviation of 0.2. Next, we discuss the prior distribution for the technology parameters
α1, α2, λq, λ∗, σu, and S ′′. According to Chari, Kehoe, and McGrattan (2000), the
value for the cost share of the �rm-speci�c factor is typically set to 1/3, so that the
share of the primary factors is α1 + α2 = 2/3; further, it is often assumed that roughly
1/3 of the primary factor income goes to capital input and 2/3 goes to labor input.
Accordingly, we set the prior means for α1 and α2 to 0.2 and 0.467, respectively. The
trend growth rate of the investment-speci�c technological change is set to 0.3 with a
standard deviation of 0.1, corresponding to an annual growth rate of 1.2%. The trend
growth rate of the neutral technological change is set to 0.5 with a standard deviation
of 0.1, corresponding to an annual growth rate of 2.0%. We set the prior mean for the
utilization parameter σu to 1.5 with a standard deviation of 0.5 and the prior mean for
the adjustment cost parameter S ′′ to 4.0 with a standard deviation of 1.5. These values
are based on Christiano, Eichenbaum, and Evans (2005) and are also used by Smets
and Wouters (2007). Third, we discuss the prior distributions for the parameters
that characterize price and nominal wage setting in the model. These include the
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average price markup µp, the average wage markup µw, the Calvo probabilities of non-
adjustment in pricing ξp and in wage-setting ξw, and the indexation parameters γp and
γw. Under our prior distribution, the average price markup and wage markup are 20%

each, with a standard deviation of 0.15; the price and nominal wage contracts both last
on average for a year; and half of �rms (households) index their prices (nominal wages)
to past in�ation. These parameter values are commonly used in the DSGE literature.
Finally, we discuss the coe�cients in the monetary policy rule, including ρr, φπ, and
φy. In light of the study by Clarida, Galí, and Gertler (2000), we set the prior mean
for the interest-rate smoothing parameter ρr to 0.6 with a standard deviation of 0.2,
the prior mean for the coe�cient in front of in�ation to 2.0 with a standard deviation
of 1.0, and the prior mean for the coe�cient in front of detrended output to 0.4 with
a standard deviation of 0.25.

Following Smets and Wouters (2007), we assume that the AR(1) coe�cient in each
of the seven shock processes, as well as the MA(1) coe�cients in the price and wage
markup processes follow the Beta distribution with a mean of 0.5 and a standard
deviation of 0.2. We assume the volatility parameter in each of the shock processes
follows the Inverse Gamma distribution InvGam(α, β) where α = 0.65 and β = 0.15.
For these hyperparameter values, the �rst two moments of the prior distribution do not
exist (thus, we display the asterisk symbol in the table). But these values imply a more
di�use prior than Smets and Wouters (2007) and Justiniano and Primiceri (2006), with
the .90 probability interval being [0.066, 19.60]. Such a di�use prior is needed to allow
for possible large changes in shock variances across regimes, as found in Sims and Zha
(2006).

VI. Estimation Results

The last three columns in Tables 1 and 2 summarize our posterior estimates of the
structural and shock parameters for three alternative models. In the �rst model, we
consider the case with constant parameters and no regime shifts. In the second model,
we introduce regime shifts in the volatilities of the shocks, while the in�ation target
remains constant. In the third and �nal model, we allow regime shifts in both the
shock volatilities and the in�ation target.

VI.1. Model I: no regime switching. We �rst discuss the posterior estimates for
the model with no regime shifts. This model is similar to that in Smets and Wouters
(2007), with four notable exceptions. First, we introduce a source of real rigidity in
the form of �rm-speci�c factors, which replaces the kinked demand curves considered
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by Smets and Wouters (2007). Second, we introduce trend growth in the investment-
speci�c technological change to better capture the data, in which the relative price
of investment goods (e.g., equipment and software) has been declining for most of the
postwar period, while in Smets and Wouters (2007), the investment-speci�c technology
shock has no trend component. Third, our model features a preference shock, which
enters all intertemporal decisions, including the choices of the nominal bond, the capi-
tal stock, and investment; while Smets and Wouters (2007) introduce a �risk-premium
shock� that enters the bond Euler equation only and is independent of other intertem-
poral shocks. Finally, in the interest rate rule, we assume that the nominal interest
rate responds to deviations of in�ation from its target and detrended output; while in
Smets and Wouters (2007), the interest rate rule targets in�ation, output gap, and the
growth rate of output gap. These di�erence turns out to be important and renders our
estimation results quite di�erent from their studies.

Table 1 reveals that, overall, the data appear to be informative about many structural
parameters. Among the three preference parameters, the posterior mode for habit
persistence is 0.994, much higher than its prior. The posterior mode for η is 2.069,
slightly higher than the prior. The estimate for β is about 0.9953, slightly lower than
the prior of 0.9960. Among the technology parameters, the posterior mode for α1

is similar to its prior, but the posterior for α2 is much higher than its prior (0.795

v. 0.467). Without a priori restrictions on the importance of �rm-speci�c factors (or
equivalently, restrictions on α1 + α2), the data seem to prefer to have constant returns
in the production function. With constant returns, the model loses one source of real
rigidities and the propagation of shocks will have to rely more on greater degrees of
nominal rigidities and more persistence in the shock processes, as we discuss below.
The estimated trend growth rate for the investment-speci�c technological change is
about 1.24% per annual, slightly higher than the prior; the estimated growth rate
for the neutral technological change is about 1.71% per annual, somewhat lower than
the prior. The curvature parameter in the utilization function is estimated at 2.05,
much higher than the prior of 1.5. The investment adjustment cost parameter has
a posterior mode of 3.28, somewhat lower than the prior mean of 4.0. Among the
parameters that describe the price and wage setting behaviors, the posterior estimates
are mostly far from the priors, suggesting that the data are indeed informative on these
parameters. The price markup is estimated at 1.0001, which is much smaller than
standard calibration; the wage markup is estimated at 1.425, which is much higher
than the prior mean of 1.2 and which implies an elasticity of substitution between
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di�erentiated labor skills of about 3.35, which lies within the range calibrated by Huang
and Liu (2002). The posterior estimates also suggest that price contracts last on average
for about 12 quarters and nominal wage contracts last on average for slightly less than
9 quarters. These estimated price and wage rigidities are greater than many other
studies and may re�ect the lack of internal propagation mechanisms in the model.
Interestingly, the estimated degrees of dynamic indexation are modest. The price
indexation parameter is estimated at 0.179 and the wage indexation parameter is 0.535.
Our posterior estimates of the policy parameters suggest that interest-rate smoothing
is important, with a posterior mode for ρr of 0.939. The estimates also suggest that the
interest rate rule responds aggressively to deviations of in�ation from its target with
a response coe�cient of 1.444 and it responds to detrended output modestly, with a
response coe�cient of 0.591. Finally, the in�ation target is estimated at 2.18% per
annual, which is smaller than the prior mean of 4% per annual.

Our posterior estimates of the shock parameters reveal that all but the preference
shock are very persistent, with the AR(1) coe�cient greater than 0.9. The preference
shock is less persistent, with an AR(1) coe�cient of 0.576. The MA(1) coe�cients
in the price markup and wage markup processes are both sizable, at 0.666 and 0.651

respectively. In addition, the government spending shock also responds to the neutral
technology shock, with a response coe�cient of 0.585. Although we assume the same
prior distribution for all the shock volatility parameters, we obtain very disperse pos-
terior estimates for these volatility parameters. The estimates reveal that the wage
markup shock, the price markup shock, the preference shock are the three largest
shocks (in size), the monetary policy shock and the neutral technology shock are the
two smallest shocks, and the investment-speci�c technology shock and the government
spending shock lie somewhere in between.

VI.2. Model II: regime shifts in shock variances. We now discuss the posterior
estimates for the model with regime shifts in shock volatilities, but with a constant
in�ation target. The estimates are reported in Table 1, the second to the last column.

Introducing regime shifts in shock volatilities in�uence the estimates for many of the
structural parameters. The most important change compared to Model I with constant
parameters is that, in the current model, the exogenous price and wage stickiness
parameters are much smaller, so that the price and wage contract durations are much
shorter. The estimates for ξp and ξw are now 0.828 and 0.794 instead of 0.919 and 0.886.
These new estimates imply that the price and wage contracts last on average for 5.8

quarters and 4.8 quarters respectively. They are still longer than those estimated by
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many other studies, but are much more realistic than the estimates obtained in the
model with constant volatilities. Compared to Model I, the estimated habit persistence
here is smaller (0.911 v. 0.994); the capital share is larger (0.225 v. 0.203) and
accordingly, the labor share is smaller (0.770 v. 0.795), although the data still prefer
a constant returns production function; the inverse Frisch elasticity is slightly lower
(1.956 v. 2.069); the average wage markup is slightly higher (1.440 v. 1.425); the price
and wage indexation parameters are both higher (0.225 and 0.605 v. 0.179 and 0.535);
and the estimated in�ation target is slightly higher (0.550 v. 0.545). Other estimates
of the structural parameters are similar to those in Model I.

Introducing regime shifts in shock volatilities also in�uence the estimates for the
shock persistence parameters. Compared to the constant volatility case in Model I, the
estimated AR(1) coe�cient for the price markup shock becomes small (0.881 v. 0.962)
and that for the wage markup shock becomes larger (0.971 v. 0.940); the estimated
MA(1) coe�cients in both the price markup and the wage markup shock processes
are larger (0.707 and 0.879 v. 0.666 and 0.651); the preference shock becomes more
persistent (0.645 v. 0.576) while the investment-speci�c technology shock becomes less
persistent (0.832 v. 0.911). What is more interesting are the estimated realizations
of the volatility parameters across the two regimes. The estimates reveal overall large
reductions of the shock volatilities when moving from the �rst regime to the second: the
volatility falls by at least one order of magnitude for all but the price and wage markup
shocks. The volatilities of the price and wage markup shocks also fall substantially
(from 0.936 and 0.905 to 0.426 and 0.537).

Finally, the estimates of the transition probabilities for the shock regimes are sum-
marized by the matrix

Q̂ =

[
0.639 0.121

0.361 0.879

]
. (57)

Thus, the second regime (i.e., the regime with low shock volatilities) is more persistent.

VI.3. Model III: regime shifts in both variances and the in�ation target.
We consider a case in which there are two regimes for the in�ation target and two
regimes for shock variances. The Markov-switching process for the in�ation target is
independent of that for shock variances. While a cluster of computers are still running
to �nd the peak of the posterior density for this case, I have so far been unable to get
the posterior value at its peak higher than than the value for Model II. The highest
peak value we have thus obtained is 4908.40, slightly lower than the posterior value for
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Model II.8 At this stage, it appears di�cult to improve the �t of the model by allowing
regime switches in the in�ation target.

VII. Model Analysis

We now examine the propagation mechanisms in the DSGE model.

VII.1. Impulse responses. We �rst plot the impulse responses of the seven observ-
able variables following each of the seven shocks under our estimated parameters. We
focus on the model with regime shifts in shock volatilities (i.e., Model II).

Figures 1 and 2 plot the impulse responses of the seven observable variables follow-
ing each of the seven shocks under the �rst shock regime, and Figures 3 and 4 plot
the impulse responses under the second shock regime. The �rst shock regime features
high volatilities of the shocks, as our posterior estimates suggest. Figure 1 shows that,
following a tightening of monetary policy ('MP'), the nominal interest rate rises while
the in�ation rate, output, and other real variables all fall. Under the estimated pa-
rameters, the monetary policy shock generates a hump-shaped response of output and
a weak hump for in�ation. A price-markup shock ('PM') leads to a fall in output and
other real variables and a rise in in�ation. In this sense, the markup shock creates an
unfavorable tradeo� between in�ation and output. Following the rise in in�ation, the
nominal interest rate also rises since the monetary policy adjust interest rate aggres-
sively against changes in in�ation. A wage-markup shock ('WM') leads to a persistent
decline in output, consumption, investment, and hours, but a rise in the real wage
and in�ation. A higher wage markup leads to higher real wages and thus higher real
marginal cost for �rms, and �rms respond by raising prices when they can re-optimize
pricing decisions. Following a government spending shock ('g'), output rises for several
quarters, while consumption, investment, and the real wage all fall. The increase in
government spending crowds out private consumption. To meet the higher demand
for goods from the government, households have to work harder and average hours
rise. The in�ation rate initially rises modestly because of the increase in aggregate
demand for goods and then declines after 5 quarters of the shock since the persistent
decline in the real wage (and hence in the real marginal cost) begins to dominate the
rise in aggregate demand. Following the rise in both output and in�ation, the nominal
interest rate rises. Since the nominal interest rate rises more than does the expected
in�ation rate, the real interest rate rises and investment falls. Figure 2 shows that,

8Note that the prior makes the posterior peak value of Model III slightly lower than that of Model
II.



HAS THE FEDERAL RESERVE'S INFLATION TARGET CHANGED? 27

under the �rst regime, a positive neutral technology shock ('tech') leads to a persistent
rise in output, consumption, investment, and the real wage. In�ation falls because the
marginal cost of production declines following the improvement in productivity. Hours
decline following the improvement in productivity, which is consistent with the predic-
tions from the standard sticky-price models such as (Galí, 1999) and Basu, Fernald,
and Kimball (2006). A positive preference shock ('pref') leads to a rise in output, con-
sumption, the real wage, hours, and in�ation, but a fall in investment. Households face
higher marginal utility of consumption and thus invest less. Since both in�ation and
output rise, the nominal interest rate also rises. Finally, a positive investment-speci�c
technology shock ('inv') leads to a rise in output, the real wage, and the in�ation rate.
Investment falls on impact and rises persistently thereafter, so do hours worked. The
decline in investment is not surprising since the shock raises the trend growth rate of
the investment-speci�c technology, and here investment measure deviations of actual
investment from trend. The persistent rise in hours following the investment shock is
consistent with the VAR evidence produced by Fisher (2006). As investment becomes
more productive, saving increases and consumption stays �at initially; over time, the
wealth e�ect raises consumption.

Figures 3 and 4 plot the impulse responses under the second shock regime, where the
size of the shocks are much smaller than under the �rst regime. The overall qualitative
patterns of the impulse responses resembles those under the �rst regime.

VII.2. Variance decompositions. Table 3 reports the forecast error variance de-
composition for output and in�ation under each of the two shock regimes at various
forecasting horizons. Under the �rst shock regime, most of the output �uctuations
in the short-run (between 4 quarters and 8 quarters) are driven mainly by the mon-
etary policy shock. In the medium run (12 quarters to 16 quarters), the neutral and
investment-speci�c technology shocks are both essential. Under this regime, the mone-
tary policy shock plays an essential role in generating the in�ation dynamics, although
in the medium run, the neutral technology shock explains at least one half of the
forecast variance of in�ation.

Under the second shock regime, the dynamics of both output and in�ation are pri-
marily driven by two shocks: the wage markup shock and the neutral technology shock.
Taken together, these two shocks account for 60−70% of output variances in the short
run and 85 − 90% in the medium run. These two shocks also explain more than
80% of in�ation �uctuations at the 4 quarter forecasting horizon and more than 90%

thereafter.
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VII.3. Model Comparison. Computing marginal likelihood for the models we study
is a major computational task, which we have not undertaken at this point. We have
instead computed maximum log posterior density (LPD) values, which can be used
to compare the models by the Schwarz criterion. As reported in Table 4, The DSGE
model with no regime shifts (Model I) does better than the VAR model with 4 lags,
consistent with the �ndings reported by Smets and Wouters (2007). The VAR model
is estimated with the log level data (not the log di�erences as in our DSGE models)
using the Sims and Zha (1998) prior and the Gibbs sampler of Waggoner and Zha
(2003). Furthermore, the model with regime shifts in shock variances (Model II) �ts
to the data better than the constant-parameter DSGE model. As for the DSGE model
with 2-regime variances and 2-regime in�ation targets (Model III), we have so far been
unable to obtain the posterior peak value higher than that for Model II. We plan to
compare more models with di�erent numbers of regimes and di�erent types of regimes
in future research.

VIII. Conclusion

Despite a hard problem, we have demonstrated that it is possible or even feasible
to estimate a medium-scale regime-switching DSGE model. While our results are
regrettably tentative and more calculations are yet to be �nished, our goal is to show
that this line of research is promising.

Appendix A. Derivation of Optimizing Decisions

A.1. Households' optimizing decisions. Each household chooses consumption, in-
vestment, new capital stock, capacity utilization, and next-period bond to solve the
following utility maximizing problem:

Max{Ct,It,Kt,ut,Bt+1} E
∞∑

t=0

βtAt

{
log(Ct − bCt−1)− ψ

1 + η
Ld

t+i(h)1+η

}
(A1)

subject to

P̄tCt +
P̄t

Qt

(It + a(ut)Kt−1) + EtDt,t+1Bt+1 ≤ Wt(h)Ld
t (h) + P̄trktutKt−1 + Πt + Bt + Tt,

(A2)

Kt = (1− δ)Kt−1 +

[
1− S

(
It

It−1

)]
It, (A3)

Denote by µt the Lagrangian multiplier for the budget constraint (A2) and by µkt

the Lagrangian multiplier for the capital accumulation equation (A3). The �rst order
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conditions for the utility-maximizing problem are given by

AtUct = µtP̄t, (A4)

Dt,t+1 = β
µt+1

µt

, (A5)

µtP̄t

Qt

= µkt {1− S(λIt)− S ′(λIt)λIt}+ βEtµk,t+1S
′(λI,t+1)(λI,t+1)

2 (A6)

µkt = βEt

[
µk,t+1(1− δ) + µt+1P̄t+1rk,t+1ut+1 − µt+1P̄t+1

Qt+1

a(ut+1)

]
, (A7)

rkt =
a′(ut)

Qt

, (A8)

where λIt ≡ It/It−1.
Let qkt ≡ Qt

µkt

µtP̄t
denote the shadow price of capital stock (in units of investment

goods). Then, (A4) and (A6) imply that

1

Qt

=
qkt

Qt

{1− S(λIt)− S ′(λIt)λIt}+ βEt
qk,t+1

Qt+1

At+1Uc,t+1

AtUct

S ′(λI,t+1)(λI,t+1)
2. (A9)

Thus, in the absence of adjustment cost or in the steady-state equilibrium where
S(λI) = S ′(λI) = 0, we have qkt = 1. One can interpret qkt as Tobin's Q.

By eliminating the Lagrangian multipliers µt and µkt, the capital Euler equation
(A7) can be rewritten as

qkt

Qt

= βEt
At+1Uc,t+1

AtUct

[
(1− δ)

qk,t+1

Qt+1

+ rk,t+1ut+1 − a(ut+1)

Qt+1

]
. (A10)

The cost of acquiring a marginal unit of capital is qkt/Qt today (in consumption unit).
The bene�t of having this extra unit of capital consists of the expected discounted
future resale value and the rental value net of utilization cost.

By eliminating the Lagrangian multiplier µt, the �rst-order condition with respect
to bond holding can be written as

Dt,t+1 = β
At+1Uc,t+1

AtUct

P̄t

P̄t+1

. (A11)

Denote by Rt = [EtDt,t+1]
−1 the interest rate for a one-period risk-free nominal bond.

Then we have
1

Rt

= βEt

[
At+1Uc,t+1

AtUct

P̄t

P̄t+1

]
. (A12)

In each period t, a fraction ξw of households re-optimize their nominal wage setting
decisions. Those households who can re-optimize wage setting chooses the nominal
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wage Wt(h) to maximize

Et

∞∑
i=0

βiξi
wAt+i[log(Ct+i − bCt+i−1)− ψ

1 + η
Ld

t+i(h)1+η] + (A13)

µt+i[Wt(h)χw
t,t+iL

d
t+i(h) + mt+i], (A14)

where the labor demand schedule is given by

Ld
t+i(h) =

(
Wt(h)χw

t,t+i

W̄t+i

)−θwt

Lt+i, θwt =
µwt

µwt − 1
, (A15)

the term mt is given by

mt = P̄trktutKt−1 + Πt + Bt + Tt − P̄tCt − P̄t

Qt

(It + a(ut)Kt−1)− EtDt,t+1Bt+1,

and the term χw
t,t+i is given by

χw
t,t+i ≡

{
Πi

k=1π
γw

t+k−1π
1−γwλi

∗ if i ≥ 1

1 if i = 0.
(A16)

The �rst-order condition for the wage-setting problem is given by

Et

∞∑
i=0

(βξw)i

{
−At+iψLd

t+i(h)η ∂Ld
t+i(h)

∂Wt(h)
+ µt+i(1− θw,t+i)χ

w
t,t+iL

d
t+i(h)

}
= 0, (A17)

where
∂Ld

t+i(h)

∂Wt(h)
= −θw,t+i

Ld
t+i(h)

Wt(h)
= − µw,t+i

µw,t+i − 1

Ld
t+i(h)

Wt(h)
.

Factoring out the common terms and rearranging, we obtain

Et

∞∑
i=0

(βξw)i µt+i

µt

Ld
t+i(h)

1

µw,t+i − 1

{
µw,t+i

ψAt+iL
d
t+i(h)η

µt+i

− χw
t,t+iWt(h)

}
= 0.

Let MRSt(h) ≡ ψAtLd
t (h)η

µt
denote the marginal rate of substitution between leisure and

income. Then, using (A11), we can rewrite the �rst-order condition for wage setting
as

Et

∞∑
i=0

ξi
wDt,t+iL

d
t+i(h)

1

µw,t+i − 1

{
µw,t+iMRSt+i(h)− χw

t,t+iWt(h)
}

= 0. (A18)
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A.2. Firms' optimizing decisions. Pricing decisions are staggered across �rms. In
each period, a fraction ξp of �rms can re-optimize their pricing decisions and the other
fraction 1− ξp of �rms mechanically update their prices according to the rule

Pt(j) = π
γp

t−1π
1−γpPt−1(j), (A19)

If a �rm can re-optimize, it chooses Pt(j) to solve

MaxPt(j) Et

∞∑
i=0

ξi
pDt,t+i[Pt(j)χ

p
t,t+iY

d
t+i(j)− Vt+i(j)], (A20)

subject to

Y d
t+i(j) =

(
Pt(j)χ

p
t,t+i

P̄t+i

)− µp,t+i
µp,t+i−1

Yt+i, (A21)

where Vt+i(j) is the cost function and the term χp
t,t+i comes from the price-updating

rule (A19) and is given by

χp
t,t+i =

{
Πi

k=1π
γp

t+k−1π
1−γp if i ≥ 1

1 if i = 0.
(A22)

The �rst order condition for the pro�t-maximizing problem yields the optimal pricing
rule

Et

∞∑
i=0

ξi
pDt,t+iY

d
t+i(j)

1

µp,t+i − 1

[
µp,t+iΦt+i(j)− Pt(j)χ

p
t,t+i

]
= 0, (A23)

where Φt+i(j) = ∂Vt+i(j)/∂Y d
t+i(j) denotes the marginal cost function. In the absence

of markup shocks, µpt would be a constant and (A23) implies that the optimal price is
a markup over an average of the marginal costs for the periods in which the price will
remain e�ective. Clearly, if ξp = 0 for all t, that is, if prices are perfectly �exible, then
the optimal price would be a markup over the contemporaneous marginal cost.

Cost-minimizing implies that the marginal cost function is given by

Φt(j) =

[
α̃

Zt

(P̄trkt)
α1

(
W̄t

λt
z

)α2
] 1

α1+α2

Yt(j)
1

α1+α2
−1

, (A24)

where α̃ ≡ α−α1
1 α−α2

2 and rkt denotes the real rental rate of capital input. The condi-
tional factor demand functions are given by

W̄t = Φt(j)α2
Yt(j)

Lf
t (j)

, (A25)

P̄trkt = Φt(j)α1
Yt(j)

Kf
t (j)

. (A26)
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It follows that
W̄t

P̄trkt

=
α2

α1

Kf
t (j)

Lf
t (j)

, ∀j ∈ [0, 1]. (A27)

A.3. Market clearing. In equilibrium, markets for bond, composite labor, capital
stock, and composite goods all clear. Bond market clearing implies that Bt = 0 for all
t. Labor market clearing implies that

∫ 1

0
Lf

t (j)dj = Lt. Capital market clearing implies
that

∫ 1

0
Kf

t (j)dj = utKt−1. Composite goods market clearing implies that

Ct +
1

Qt

[It + a(ut)Kt−1] + Gt = Yt, (A28)

where aggregate output is related to aggregate primary factors through the aggregate
production function

GptYt = Zt(utKt−1)
α1(λt

zLt)
α2 , (A29)

with Gpt ≡
∫ 1

0

(
Pt(j)

P̄t

)− µpt
µpt−1

1
α1+α2 dj measuring the price dispersion.

A.4. Stationary equilibrium conditions. Since both the neutral technology and
the investment-speci�c technology are growing over time, we transform the appropri-
ate variables to induce stationarity. In particular, we denote by X̃t the stationary
counterpart of the variable Xt and we make the following transformations:

Ỹt =
Yt

λt∗
, C̃t =

Ct

λt∗
, Ĩt =

It

Qtλt∗
, G̃t =

Gt

λt∗
, K̃t =

Kt

Qtλt∗
,

w̃t =
W̄t

P̄tλt∗
, r̃kt = rktQt, Ũct = Uctλ

t
∗,

A.4.1. Stationary pricing decisions. In terms of the stationary variables, we can rewrite
the optimal pricing decision (A23) as

Et

∞∑
i=0

(βξp)
iAt+iŨc,t+iỸ

d
t+i(j)

1

µp,t+i − 1
[µp,t+iφt+i(j)− p∗t Z

p
t,t+i] = 0. (A30)

In this equation, Ỹ d
t+i(j) =

Y d
t+i(j)

λt+i∗
denotes the detrended output demand; p∗t ≡ Pt(j)

P̄t

denotes the relative price for optimizing �rms, which does not have a j index since all
optimizing �rms make identical pricing decisions in a symmetric equilibrium; the term
Zp

t,t+i is de�ned as

Zp
t,t+i =

χp
t,t+i∏i

k=1 πt+k

(A31)
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and �nally, the term φt+i(j) ≡ Φt+i(j)

P̄t+i
denotes the real unit cost function, which is given

by

φt+i(j) =

[
α̃

Zt+i

(
r̃k,t+i

qt+iλt+i
q

)α1
(

w̃t+i
λt+i
∗

λt+i
z

)α2
] 1

α1+α2

Y d
t+i(j)

1
α1+α2

−1

=

[
α̃

Zt+i

(
r̃k,t+i

qt+i

)α1

(w̃t+i)
α2

] 1
α1+α2

Ỹ d
t+i(j)

1
α1+α2

−1
. (A32)

The demand schedule Ỹ d
t+i(j) for the optimizing �rm j is related to the relative price

and aggregate output through

Ỹ d
t+i(j) =

[
Pt(j)χ

p
t,t+i

P̄t+i

]−θp,t+i

Ỹt+i

=

[
p∗t

P̄t

P̄t+i

χp
t,t+i

]−θp,t+i

Ỹt+i

= [p∗t Z
p
t,t+i]

−θp,t+iỸt+i. (A33)

Combining (A32) and (A33), we have

φt+i(j) = φ̃t+i[p
∗
t Z

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ, (A34)

where ᾱ ≡ 1−α1−α2

α1+α2
and

φ̃t+i ≡
[

α̃

Zt+i

(
r̃k,t+i

qt+i

)α1

w̃α2
t+i

] 1
α1+α2

. (A35)

Given these relations, we can rewrite the optimal pricing rule (A30) in terms of
stationary variables

Et

∞∑
i=0

(βξp)
i At+iŨc,t+iỸ

d
t+i(j)

µp,t+i − 1
[µp,t+iφ̃t+i[p

∗
t Z

p
t,t+i]

−θp,t+iᾱ(Ỹt+i)
ᾱ − p∗t Z

p
t,t+i] = 0, (A36)

where φ̃ is de�ned in (A35).

A.4.2. Stationary wage setting decision. Using (A4) and (A11), we can rewrite the
optimal wage-setting decision (A18) as

Et

∞∑
i=0

(βξw)i At+iUc,t+i

AtUct

P̄t

P̄t+i

Ld
t+i(h)

1

µw,t+i − 1
[µw,t+iψ

Ld
t+i(h)η

Uc,t+i

P̄t+i −Wt(h)χw
t,t+i] = 0,

(A37)
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where the labor demand schedule Ld
t+i(h) is related to aggregate variables through

Ld
t+i(h) =

[
Wt(h)χw

t,t+i

W̄t+i

]−θw,t+i

Lt+i (A38)

=

[
w∗

t

W̄t

W̄t+i

χw
t,t+i

]−θw,t+i

Lt+i (A39)

=

[
w∗

t

w̃tP̄tλ
t
∗

w̃t+iP̄t+iλ
t+i∗

χw
t,t+i

]−θw,t+i

Lt+i (A40)

=

[
w∗

t w̃t

w̃t+i

χw
t,t+i∏i

k=1 πt+kλi∗

]−θw,t+i

Lt+i (A41)

≡
[
w∗

t w̃t

w̃t+i

Zw
t,t+i

]−θw,t+i

Lt+i, (A42)

with Zw
t,t+i de�ned as

Zw
t,t+i =

χw
t,t+i∏i

k=1 πt+kλi∗
. (A43)

Further, we can rewrite the individual optimal nominal wage Wt(h) as

Wt(h) = w∗
t W̄t = w∗

t w̃tP̄tλ
t
∗.

Given these relations, we can rewrite the wage setting rule (A37) in terms of the
stationary variables. With some cancelations, we obtain

Et

∞∑
i=0

i∏

k=1

(βξw)i At+iŨc,t+iL
d
t+i(h)

µw,t+i − 1

{
µw,t+iψ

[
w∗

t w̃t

w̃t+i

Zw
t,t+i

]−ηθw,t+i Lη
t+i

Ũc,t+i

− w∗
t w̃tZ

w
t,t+i

}
= 0.

(A44)

A.4.3. Other stationary equilibrium conditions. We now rewrite the rest of the equi-
librium conditions in terms of stationary variables.

First, the optimal investment decision equation (A9) can be written as

1 = qkt {1− S(λIt)− S ′(λIt)λIt}+
β

λqλ∗
Etqk,t+1

qt

qt+1

At+1Ũc,t+1

AtŨct

S ′(λI,t+1)(λI,t+1)
2,

(A45)
where

λIt =
It

It−1

=
ĨtQtλ

t
∗

Ĩt−1Qt−1λ
t−1∗

=
Ĩtqt

Ĩt−1qt−1

λqλ∗. (A46)

Second, the capital Euler equation (A10) can be written as

qkt =
β

λqλ∗
Et

At+1Ũc,t+1

AtŨct

qt

qt+1

[(1− δ)qk,t+1 + r̃k,t+1ut+1 − a(ut+1)] . (A47)
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Third, the optimal capacity utilization decision (A8) is equivalent to

r̃kt = a′(ut). (A48)

Fourth, the intertemporal bond Euler equation (A12) can be written as

1

Rt

=
β

λ∗
Et

[
At+1Ũc,t+1

AtŨct

1

πt+1

]
. (A49)

Fifth, the law of motion for capital stock in (A3) can be written as

K̃t = (1− δ)
qt−1K̃t−1

qtλqλ∗
+ [1− S(λIt)]Ĩt. (A50)

Sixth, the aggregate resource constraint is given by

C̃t + Ĩt +
qt−1

qtλqλ∗
a(ut)K̃t−1 + G̃t = Ỹt. (A51)

Seventh, the aggregate production function (A29) can be written as

GptỸt = Zt

[
utqt−1K̃t−1

λqλ∗

]α1

Lα2
t . (A52)

Eighth, �rms' cost-minimizing implies that, in the stationary equilibrium, we have
w̃t

r̃kt

=
1

λqλ∗

α2

α1

utK̃t−1

Lt

qt−1

qt

. (A53)

Finally, we rewrite the interest rate rule here for convenience of referencing:

Rt = κRρr

t−1

[(
πt

π∗(st)

)φπ

Ỹ
φy

t

]1−ρr

eσrtεrt . (A54)

Appendix B. Steady State

A deterministic steady state is an equilibrium in which all stochastic shocks are shut
o�. Our model contains a non-standard �shock�: the Markov regime switching in mon-
etary policy regime and the shock regime. In computing the steady-state equilibrium,
we shut o� all shocks, including the regime shocks. Since there is a mapping between
any �nite-state Markov switching process and a vector AR(1) process (Hamilton, 1994),
shutting o� the regime shocks in the steady state is equivalent to setting the innova-
tions in the AR(1) process to its unconditional mean (which is zero). In such a steady
state, all stationary variables are constant.

In the steady state, p∗ = 1 and Zp = 1, so that the price setting rule (A36) reduces
to

1

µp

=

[
α̃

Z

(
r̃k

q

)α1

w̃α2

] 1
α1+α2

Ỹ ᾱ. (A55)
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That is, the real marginal cost is constant and equals the inverse markup.
Similarly, in the steady state, w∗ = 1 and Zw = 1, so that the wage setting rule

(A44) reduces to

w̃ = µw
ψLη

Ũc

, (A56)

which says that the real wage is a constant markup over the marginal rate of substitu-
tion between leisure and consumption.

Given that the steady-state markup, and thus the steady-state real marginal cost,
is a constant, the conditional factor demand function (A26) for capital input together
with the capital market clearing condition imply that

r̃k =
α1

µp

Ỹ λqλ∗
K̃

. (A57)

The rest of the steady-state equilibrium conditions for the private sector come from
(A45) -(A53) and are summarized below:

1 = qk, (A58)
λqλ∗
β

= 1− δ + r̃k, (A59)

r̃k = a′(1), (A60)

R =
λ∗
β

π, (A61)

Ĩ

K̃
= 1− 1− δ

λqλ∗
, (A62)

Ỹ = C̃ + Ĩ + G̃, (A63)

Ỹ = Z

(
qK̃

λqλ∗

)α1

Lα2 , (A64)

w̃

r̃k

=
1

λqλ∗

α2

α1

K̃

L
. (A65)

Appendix C. Linearized equilibrium conditions

We now describe our procedure to linearize the stationary equilibrium conditions
around the deterministic steady state.
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C.1. Linearizing the price setting rule. Log-linearizing the price setting rule (A36)
around the steady state, we get

Et ln
∞∑
i=0

(βξp)
i exp

{
ât+i + ûc,t+i + ŷd

t+i(h)− µp

µp − 1
µ̂p,t+i + µ̂p,t+i+

ˆ̃φt+i − θpᾱ[p̂∗t + Ẑp
t,t+i] + ᾱŷt+i

}

≈ Et ln
∞∑
i=0

(βξp)
i exp

{
ât+i + ûc,t+i + ŷd

t+i(h)− µp

µp − 1
µ̂p,t+i + p̂∗t + Ẑp

t,t+i

}
,

where
ˆ̃φt+i =

1

α1 + α2

[α1(r̂k,t+i − q̂t+i) + α2ŵt+i − ẑt+i]. (A66)

Collecting terms to get

Et ln
∞∑
i=0

(βξp)
i
{

µ̂p,t+i + ˆ̃φt+i − θpᾱ[p̂∗t + Ẑp
t,t+i] + ᾱŷt+i

}

≈ Et ln
∞∑
i=0

(βξp)
i
{

p̂∗t + Ẑp
t,t+i

}
.

Further simplifying

1 + θpᾱ

1− βξp

p̂∗t = Et ln
∞∑
i=0

(βξp)
i
{

µ̂p,t+i + ˆ̃φt+i + ᾱŷt+i − (1 + θpᾱ)Ẑp
t,t+i

}
.

Denote m̂ct+i ≡ ˆ̃φt+i + ᾱŷt+i. Expanding the in�nite sum in the above equation, we
get

1 + ᾱθp

1− βξp

p̂∗t = µ̂pt + m̂ct − (1 + θpᾱ)Ẑp
t,t

+ βξpEt[µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑp
t,t+1]

+ (βξp)
2Et[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑp

t,t+2] + . . .

Forwarding this relation one period to get

1 + ᾱθp

1− βξp

p̂∗t+1 = µ̂p,t+1 + m̂ct+1 − (1 + θpᾱ)Ẑp
t+1,t+1

+ βξpEt+1[µ̂p,t+2 + m̂ct+2 − (1 + θpᾱ)Ẑp
t+1,t+2]

+ (βξp)
2Et+1[µ̂p,t+3 + m̂ct+3 − (1 + θpᾱ)Ẑp

t+1,t+3] + . . .
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Moving the Zp
t,t+i terms to the left, we have

1 + ᾱθp

1− βξp

p̂∗t + (1 + ᾱθp)Et[Ẑ
p
t,t + βξpẐ

p
t,t+1 + ...] = µ̂pt + m̂ct

+βξpEt[µ̂p,t+1 + m̂ct+1]

+(βξp)
2Et[µ̂p,t+2 + m̂ct+2] + . . .

= µ̂pt + m̂ct

+βξp

[
1 + ᾱθp

1− βξp

Etp̂
∗
t+1 + (1 + ᾱθp)Et[Ẑ

p
t+1,t+1 + βξpẐ

p
t+1,t+2 + ...]

]
,

Since Ẑp
t,t = 0, we have

1 + ᾱθp

1− βξp

p̂∗t = µ̂pt + m̂ct + βξp
1 + ᾱθp

1− βξp

Et[p̂
∗
t+1

+ (1 + ᾱθp)βξpEt

∞∑
i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1]. (A67)

Using the de�nition of Zp
t,t+i in (A31), we obtain

Ẑp
t,t+i+1 = −[π̂t+i+1 − γp,t+iπ̂t+i + · · ·+ π̂t+1 − γptπ̂t]

Ẑp
t+1,t+i+1 = −[π̂t+i+1 − γp,t+iπ̂t+i + · · ·+ π̂t+2 − γp,t+1π̂t+1].

Thus,
Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1 = π̂t+1 − γptπ̂t,

and the Zp terms in (A67) can be reduced to
∞∑
i=0

(βξp)
i[Ẑp

t+1,t+i+1 − Ẑp
t,t+i+1] =

1

1− βξp

[π̂t+1 − γptπ̂t].

Substituting this result into (A67), we obtain

p̂∗t =
1− βξp

1 + ᾱθp

(µ̂pt + m̂ct) + βξpEtp̂
∗
t+1 + βξpEt[π̂t+1 − γptπ̂t]. (A68)

This completes log-linearizing the optimal price setting equation. We now log-linearize
the price index relation. In an symmetric equilibrium, the price index relation is given
by

1 = ξp

[
1

πt

π
γp

t−1π
1−γp

] 1
1−µpt

+ (1− ξp)(p
∗
t )

1
1−µpt , (A69)

the linearized version of which is given by

p̂∗t =
ξp

1− ξp

(π̂t − γpπ̂t−1). (A70)
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Using (A70) to substitute out the p̂∗t in (A68), we obtain

ξp

1− ξp

[π̂t − γpπ̂t−1]

=
1− βξp

1 + ᾱθp

(µ̂pt + m̂ct)

+βξp
ξp

1− ξp

Et[π̂t+1 − γpπ̂t] + βξpEt[π̂t+1 − γpπ̂t],

or
π̂t − γpπ̂t−1 =

κp

1 + ᾱθp

(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (A71)

where the real marginal cost is given by

m̂ct =
1

α1 + α2

[α1(r̂k,t+i − q̂t+i) + α2ŵt+i − ẑt+i] + ᾱŷt. (A72)

and the term κp is given by

κp ≡ (1− βξp)(1− ξp)

ξp

This completes the derivation of the price Phillips curve.

C.2. Linearizing the optimal wage setting rule. Log-linearizing this wage decision
rule, we get

Et ln
∞∑
i=0

(βξw)i exp

{
ât+i + ûc,t+i + l̂dt+i(h)− µw

µw − 1
µ̂w,t+i + µ̂w,t+i−

ηθw[ŵ∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et ln
∞∑
i=0

(βξw)i exp

{
ât+i + ûc,t+i + l̂dt+i(h)− µw

µw − 1
µ̂w,t+i + ŵ∗

t + ŵt + Ẑw
t,t+i

}
.

Collecting terms to get

Et ln
∞∑
i=0

(βξw)i
{

µ̂w,t+i − ηθw[ŵ∗
t + ŵt − ŵt+i + Ẑw

t,t+i] + ηl̂t+i − ûc,t+i

}

≈ Et ln
∞∑
i=0

(βξw)i
{

ŵ∗
t + ŵt + Ẑw

t,t+i

}
.

Further simplifying

1 + ηθw

1− βξw

(ŵ∗
t +ŵt) = Et ln

∞∑
i=0

(βξw)i
{

µ̂w,t+i + ηl̂t+i − ûc,t+i + ηθwŵt+i − (1 + ηθw)Ẑw
t,t+i

}
.
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Denote m̂rst+i ≡ ηl̂t+i − ûc,t+i. Expanding the in�nite sum in the above equation,
we get
1 + ηθw

1− βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)(ŵt − Ẑw

t,t)

+ βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw
t,t+1)]

+ (βξw)2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw
t,t+2)] + . . .

Forwarding this relation one period to get
1 + ηθw

1− βξw

(ŵ∗
t+1 + ŵt+1) = µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)(ŵt+1 − Ẑw

t+1,t+1)

+ βξwEt+1[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)(ŵt+2 − Ẑw
t+1,t+2)]

+ (βξw)2Et+1[µ̂w,t+3 + m̂rst+3 − ŵt+3 + (1 + ηθw)(ŵt+3 − Ẑw
t+1,t+3)] + . . .

Moving the Zw
t,t+i terms to the left, we have

1 + ηθw

1− βξw

(ŵ∗
t + ŵt) + (1 + ηθw)Et[Ẑ

w
t,t + βξwẐw

t,t+1 + ...] = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt[µ̂w,t+1 + m̂rst+1 − ŵt+1 + (1 + ηθw)ŵt+1]

+(βξw)2Et[µ̂w,t+2 + m̂rst+2 − ŵt+2 + (1 + ηθw)ŵt+2] + . . .

= µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt

+βξwEt

[
1 + ηθw

1− βξw

(ŵ∗
t+1 + ŵt+1) + (1 + ηθw)[Ẑw

t+1,t+1 + βξwẐw
t+1,t+2 + ...]

]
,

Since Ẑw
t,t = 0, we have

1 + ηθw

1− βξw

(ŵ∗
t + ŵt) = µ̂wt + m̂rst − ŵt + (1 + ηθw)ŵt + βξw

1 + ηθw

1− βξw

Et(ŵ
∗
t+1 + ŵt+1)

+ (1 + ηθw)βξwEt

∞∑
i=0

(βξw)i[Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1]. (A73)

Using the de�nition of Zw
t,t+i in (A43), we obtain

Ẑw
t,t+i+1 = −[π̂t+i+1 − γw,t+iπ̂t+i + · · ·+ π̂t+1 − γwtπ̂t]

Ẑw
t+1,t+i+1 = −[π̂t+i+1 − γw,t+iπ̂t+i + · · ·+ π̂t+2 − γw,t+1π̂t+1].

Thus,
Ẑw

t+1,t+i+1 − Ẑw
t,t+i+1 = π̂t+1 − γwtπ̂t,

and the Zw terms in (A73) can be reduced to
∞∑
i=0

(βξw)i[Ẑw
t+1,t+i+1 − Ẑw

t,t+i+1] =
1

1− βξw

[π̂t+1 − γwtπ̂t].
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Substituting this result into (A73), we obtain

ŵ∗
t +ŵt =

1− βξw

1 + ηθw

(µ̂wt+m̂rst−ŵt)+(1−βξw)ŵt+βξwEt(ŵ
∗
t+1+ŵt+1)+βξwEt[π̂t+1−γwtπ̂t].

(A74)
This completes log-linearizing the wage decision equation. We now log-linearize the
wage index relation. In an symmetric equilibrium, the wage index relation is given by

1 = ξw

[
w̃t−1

w̃t

1

πt

πγw

t−1π
1−γw

] 1
1−µwt

+ (1− ξw)(w∗
t )

1
1−µwt , (A75)

the linearized version of which is given by

ŵ∗
t =

ξw

1− ξw

(ŵt − ŵt−1 + π̂t − γwπ̂t−1)]. (A76)

Using (A76) to substitute out the ŵ∗
t in (A74), we obtain

ŵt +
ξw

1− ξw

[ŵt − ŵt−1 + π̂t − γwπ̂t−1]

=
1− βξw

1 + ηθw

(µ̂wt + m̂rst − ŵt) + (1− βξw)ŵt

+βξwEt

{
ŵt+1 +

ξw

1− ξw

[ŵt+1 − ŵt + π̂t+1 − γwπ̂t]

}
+ βξwEt[π̂t+1 − γwπ̂t],

or

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw

(µ̂wt + m̂rst − ŵt)+

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t], (A77)

where κw ≡ (1−βξw)(1−ξw)
ξw

.
To help understand the economics behind this equation, we de�ne the nominal wage

in�ation as
πw

t =
W̄t

W̄t−1

=
w̃tP̄tλ

t
∗

w̃t−1P̄t−1λ
t−1∗

=
w̃t

w̃t−1

πtλ∗. (A78)

The log-linearized version is given by

π̂w
t = ŵt − ŵt−1 + π̂t.

Thus, the optimal wage decision (A77) is equivalent to

π̂w
t − γwπ̂t−1 =

κw

1 + ηθw

(µ̂wt + m̂rst − ŵt) + βEt(π̂
w
t+1 − γwπ̂t). (A79)

This nominal-wage Phillips curve relation parallels that of the price-Phillips curve and
has similar interpretations.
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C.3. Linearizing other stationary equilibrium conditions. Taking total di�eren-
tiation in the investment decision equation (A45) and using the steady-state conditions
that S(λI) = S ′(λI) = 0 and that λI = λqλ∗, we obtain

q̂kt = S ′′(λI)λ
2
I

[
λ̂It − βEtλ̂I,t+1

]
, (A80)

where, from (A46), we have

λ̂It = ît − ît−1 + q̂t − q̂t−1. (A81)

Taking total di�erentiation in the capital Euler equation (A47) and using the steady-
state conditions that q̃k = 1, u = 1, a(1) = 0, r̃k = a′(1), and β

λI
(1 − δ + r̃k) = 1, we

obtain

q̂kt = Et

{
∆ât+1 + ∆Ûc,t+1 −∆q̂t+1 +

β

λI

[(1− δ)q̂k,t+1 + r̃kr̂k,t+1]

}
, (A82)

where ∆xt+1 ≡ xt+1 − xt denotes the growth rate of the variable x.
The linearized capacity utilization decision equation (A48) is given by

r̂kt = σuût, (A83)

where σu ≡ a′′(1)
a′(1)

is the curvature parameter for the capacity utility function a(u)

evaluated at the steady state.
The linearized intertemporal bond Euler equation (A49) is given by

0 = Et

[
∆ât+1 + ∆Ûc,t+1 + R̂t − π̂t+1

]
. (A84)

Log-linearize the capital law of motion (A50) leads to

k̂t =
1− δ

λqλ∗
[k̂t−1 + q̂t−1 − q̂t] +

Ĩ

K̃
ît. (A85)

To obtain the linearized resource constraint, we take total di�erentiation of (A51)
to obtain

ŷt = cy ĉt + iy ît + uyût + gyĝt, (A86)
where cy = C̃

Ỹ
, iy = Ĩ

Ỹ
, uy = 1

λqλ∗
r̃kK̃

Ỹ
, and gy = G̃

Ỹ
.

Log-linearizing the aggregate production, we get

ŷt = ẑt + α1[k̂t−1 + ût + q̂t−1] + α2l̂t. (A87)

The linearized version of the factor demand relation (A53) is given by

ŵt − r̂kt = k̂t−1 + ût + q̂t−1 − q̂t − l̂t. (A88)

Finally, linearizing the interest rate rule (A54) gives

R̂t = ρrR̂t−1 + (1− ρr) [φπ(π̂t − π̂∗(st)) + φyŷt] + σrtεrt, (A89)
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where

π̂∗(st) ≡ log π∗(st)− log π.

Note that, with regime-switching in�ation target, we have

π̂∗(st) = 1{st = 1}π̂∗(1) + 1{st = 2}π̂∗(2) = [π̂∗(1), π̂∗(2)]est ,

where

est =

[
1{st = 1}
1{st = 2}

]
.

It is useful to use the result that the random vector est follows an AR(1) process:

est = Qest−1 + vt,

where Q is the Markov transition matrix of the regime and Et−1vt = 0.

C.4. Summary of linearized equilibrium conditions. We now summarize the
linearized equilibrium conditions to be used for solving and estimating the model.
These conditions are listed below.

π̂t − γpπ̂t−1 =
κp

1 + ᾱθp
(µ̂pt + m̂ct) + βEt[π̂t+1 − γpπ̂t], (A90)

ŵt − ŵt−1 + π̂t − γwπ̂t−1 =
κw

1 + ηθw
(µ̂wt + m̂rst − ŵt) +

βEt[ŵt+1 − ŵt + π̂t+1 − γwπ̂t]. (A91)

q̂kt = S′′(λI)λ2
I

[
∆ît + ∆q̂t − βEt(∆ît+1 + ∆q̂t+1)

]
, (A92)

q̂kt = Et

{
∆ât+1 + ∆Ûc,t+1 −∆q̂t+1 +

β

λI
[(1− δ)q̂k,t+1 + r̃kr̂k,t+1]

}
, (A93)

r̂kt = σuût, (A94)

0 = Et

[
∆ât+1 + ∆Ûc,t+1 + R̂t − π̂t+1

]
, (A95)

k̂t =
1− δ

λI
[k̂t−1 + q̂t−1 − q̂t] +

(
1− 1− δ

λI

)
ît, (A96)

ŷt = cy ĉt + iy ît + uyût + gy ĝt, (A97)
ŷt = ẑt + α1[k̂t−1 + ût + q̂t−1] + α2 l̂t, (A98)

ŵt − r̂kt = k̂t−1 + ût + q̂t−1 − q̂t − l̂t, (A99)
R̂t = ρrR̂t−1 + (1− ρr)

[
φπ(π̂t − π̂∗(st)) + φy ŷt

]
+ σrtεrt, (A100)
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where
m̂ct =

1
α1 + α2

[α1(r̂kt − q̂t) + α2ŵt − ẑt] + ᾱŷt, (A101)

m̂rst = ηl̂t − Ûct, (A102)

Ûct =
βb(1− ρa)
λ∗ − βb

ât − λ∗
(λ∗ − b)(λ∗ − βb)

(λ∗ĉt − bĉt−1)

+
βb

(λ∗ − b)(λ∗ − βb)
(λ∗Etĉt+1 − bĉt), (A103)

π̂∗(st) = [π̂∗(1), π̂∗(2)]est
, est

= Qest−1 + vt, (A104)
(A105)

and the steady-state variables are given by

r̃k =
λI

β
− (1− δ), (A106)

uy ≡ r̃kK̃

Ỹ λI

=
α1

µp
, (A107)

iy = [λI − (1− δ)]
α1

µpr̃k
, (A108)

cy = 1− iy − gy, (A109)

with λI ≡ λqλ∗ and gy calibrated to match the average ratio of government spending
to real GDP.

To compute the equilibrium, we eliminate ût by using (A97), leaving 10 equations
(A90)-(A96) and (A98)-(A100) with 10 variables π̂t, ŵt, ît, q̂kt, r̂kt, ĉt, k̂t, ŷt, l̂t, and
R̂t. Out of these 10 variables, we have 7 observable variables, that is, all but q̂kt, r̂kt,
and k̂t, for our estimation.

����
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Table 1. Prior Distribution and Posterior Mode of Structural Parameters

Prior Posterior
Parameter Distribution Mean Std Model I Model II Model III
b Beta 0.7 0.2 0.994 0.939

η Gamma 2.0 0.5 2.069 1.954

100
(

1
β
− 1

)
Beta 0.4 0.2 0.476 0.149

α1 Beta 0.2 0.1 0.203 0.194

α2 Beta 0.467 0.1 0.795 0.806

100(λq − 1) Gamma 0.3 0.1 0.310 0.234

100(λ∗ − 1) Gamma 0.5 0.1 0.428 0.386

σu Gamma 1.5 0.5 2.045 1.992

S ′′ Gamma 4.0 1.5 3.282 3.341

µp − 1 Gamma 0.2 0.15 0.0001 0.019

µw − 1 Gamma 0.2 0.15 0.425 0.374

ξp Beta 0.75 0.1 0.919 0.858

ξw Beta 0.75 0.1 0.886 0.750

γp Beta 0.5 0.2 0.179 0.305

γw Beta 0.5 0.2 0.535 0.455

ρr Beta 0.6 0.2 0.939 0.799

φπ Normal 2.0 1.0 1.444 1.656

φy Gamma 0.4 0.25 0.591 0.035

100(π∗(1)− 1) Gamma 1.0 0.5 0.545 0.586

100(π∗(2)− 1) Gamma 1.0 0.5 0.545 0.586

Note: Model I: no regime shifts; Model II: regime shifts in shock volatilities; Model
III: regime shifts in both shock volatilities and the in�ation target.
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Table 2. Prior Distribution and Posterior Mode of Shock Parameters

Prior Posterior
Parameter Distribution Mean Std Model I Model II Model III
ρp Beta 0.5 0.2 0.962 0.932

φp Beta 0.5 0.2 0.666 0.832

ρw Beta 0.5 0.2 0.940 0.974

φw Beta 0.5 0.2 0.651 0.892

ρg Beta 0.5 0.2 0.999 0.999

ρgz Beta 0.5 0.2 0.585 0.726

ρa Beta 0.5 0.2 0.576 0.227

ρq Beta 0.5 0.2 0.911 0.947

ρz Beta 0.5 0.2 0.999 0.999

σr(1) Inverse Gamma ∗ ∗ 0.0028 0.783

σp(1) Inverse Gamma ∗ ∗ 0.9001 0.860

σw(1) Inverse Gamma ∗ ∗ 1.0506 0.941

σg(1) Inverse Gamma ∗ ∗ 0.0274 0.813

σa(1) Inverse Gamma ∗ ∗ 0.4311 0.828

σq(1) Inverse Gamma ∗ ∗ 0.0511 0.793

σz(1) Inverse Gamma ∗ ∗ 0.0082 0.143

σr(2) Inverse Gamma ∗ ∗ 0.0028 0.003

σp(2) Inverse Gamma ∗ ∗ 0.9001 0.076

σw(2) Inverse Gamma ∗ ∗ 1.0506 0.510

σg(2) Inverse Gamma ∗ ∗ 0.0274 0.018

σa(2) Inverse Gamma ∗ ∗ 0.4311 0.060

σq(2) Inverse Gamma ∗ ∗ 0.0511 0.015

σz(2) Inverse Gamma ∗ ∗ 0.0082 0.007
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Table 3. Forecast Error Variance Decomposition

Regime I
Output

Horizon MPolicy PMarkup WMarkup GSpend Productivity Preference Invest.

4Q 91.6462 0.2302 0.0168 1.6402 1.8317 0.0767 4.5582
8Q 75.0992 0.4912 0.0747 1.8678 7.0822 0.0188 15.3662
12Q 34.7132 0.7972 0.2567 4.2389 23.6818 0.0049 36.3073
16Q 2.6804 0.6372 0.4509 7.4381 44.0213 0.0012 44.7708

In�ation

Horizon MPolicy PMarkup WMarkup GSpend Productivity Preference Invest.

4Q 93.4191 0.2390 0.0480 0.0038 3.8626 0.0587 2.3688
8Q 86.3970 0.0789 0.1193 0.0416 6.5481 0.0687 6.7464
12Q 28.4258 0.3483 0.9855 1.3849 50.6854 0.3329 17.8371
16Q 40.0244 0.5365 0.9725 2.1447 56.0087 0.2844 0.0288

Regime II
Output

Horizon MPolicy PMarkup WMarkup GSpend Productivity Preference Invest.

4Q 8.1943 12.4563 33.7673 5.5876 26.5742 2.7503 10.6700
8Q 2.0384 8.0674 45.6472 1.9317 31.1916 0.2042 10.9195
12Q 0.3085 4.2872 51.3534 1.4354 34.1504 0.0173 8.4477
16Q 0.0140 2.0147 53.0391 1.4809 37.3242 0.0024 6.1247

In�ation

Horizon MPolicy PMarkup WMarkup GSpend Productivity Preference Invest.

4Q 4.5989 7.1183 53.2097 0.0072 30.8540 1.1591 3.0529
8Q 2.1133 1.1681 65.6975 0.0387 25.9881 0.6741 4.3201
12Q 0.0908 0.6734 70.8722 0.1686 26.2763 0.4267 1.4920
16Q 0.1269 1.0292 69.4064 0.2591 28.8143 0.3617 0.0024
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Table 4. Marginal Likelihood of VAR Model vs. DSGE Models

Model Log-likelihood
VAR(4) 4495.00
DSGE Model I 4759.07
DSGE Model II 4911.38
DSGE Model III 4908.40
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Figure 1. Impulse responses in Model II under the �rst regime: Part a.
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Figure 2. Impulse responses in Model II under the �rst regime: Part b.
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Figure 3. Impulse responses in Model II under the second regime: Part a.
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