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Abstract

We study the formation of a ruling coalition in nondemocratic societies where institutions do not
enable political commitments. Each individual is endowed with a level of political power. The ruling
coalition consists of a subset of the individuals in the society and decides the distribution of resources. A
ruling coalition needs to contain enough powerful members to win against any alternative coalition that
may challenge it and it needs to be self-enforcing, in the sense that none of its subcoalitions should be able
to secede and become the new ruling coalition. We present both an axiomatic approach that captures
these notions and determines a (generically) unique ruling coalition and the analysis of a dynamic game
of coalition formation that encompasses these ideas. We establish that the subgame perfect equilibria
of the coalition formation game coincide with the set of ruling coalitions resulting from the axiomatic
approach. A key insight of our analysis is that a coalition is made self-enforcing by the failure of its
winning subcoalitions to be self-enforcing. This is most simply illustrated by the following example: with
�majority rule,� two-person coalitions are generically not self-enforcing and consequently, three-person
coalitions are self-enforcing (unless one player is disproportionately powerful). We also characterize the
structure of ruling coalitions. For example, we determine the conditions under which ruling coalitions
are robust to small changes in the distribution of power and when they are fragile. We also show that
when the distribution of power across individuals is relatively equal and there is majoritarian voting, only
certain sizes of coalitions (e.g., with �majority rule,�coalitions of size 3, 7, 15, 31, etc.) can be the ruling
coalition.

Keywords: coalition formation, political economy, self-enforcing coalitions, stability.
JEL Classi�cation: D71, D74, C71.

�We thank Attila Ambrus, Salvador Barbera, Jon Eguia, Irina Khovanskaya, Eric Maskin, Benny Moldovanu,
Victor Polterovich, Andrea Prat, Debraj Ray, Muhamet Yildiz, three anonymous referees, and seminar par-
ticipants at the Canadian Institute of Advanced Research, MIT, the New Economic School, the Institute for
Advanced Studies, and University of Pennsylvania PIER, NASM 2007, and EEA-ESEM 2007 conferences for
useful comments. Acemoglu gratefully acknowledges �nancial support from the National Science Foundation.



1 Introduction

We study the formation of a ruling coalition in a nondemocratic (�weakly institutionalized�)

environment. A ruling coalition must be powerful enough to impose its wishes on the rest of the

society. A key ingredient of our analysis is that because of the absence of strong, well-functioning

institutions, binding agreements are not possible.1 This has two important implications: �rst,

members of the ruling coalition cannot make binding o¤ers on how resources will be distributed;

second, and more importantly, members of a candidate ruling coalition cannot commit to not

eliminating (sidelining) fellow members in the future. Consequently, there is always the danger

that, once a particular coalition has formed and has centralized power in its hands, a subcoalition

will try to remove some of the original members of the coalition in order to increase the share

of resources allocated to itself. Ruling coalitions must therefore not only be powerful enough to

be able to impose their wishes on the rest of the society, but also self-enforcing so that none

of their subcoalitions are powerful enough and wish to split from or eliminate the rest of this

coalition. These considerations imply that the nature of ruling coalitions is determined by a

tradeo¤ between �power�and �self-enforcement�.

More formally, we consider a society consisting of an arbitrary number of individuals with

di¤erent amount of political or military powers (�guns�). Any subset of these individuals can

form a coalition and the power of the coalition is equal to the sum of the powers of its members.

We formalize the interplay between power and self-enforcement as follows: a coalition with

su¢ cient power is winning against the rest of the society and can centralize decision-making

powers in its own hands (for example, eliminating the rest of the society from the decision-

making process). How powerful a coalition needs to be in order to be winning is determined

by a parameter �. When � = 1=2, this coalition simply needs to be more powerful than the

rest of the society, so this case can be thought of as �majority rule.� When � > 1=2, the

coalition needs �supermajority�or more than a certain multiple of the power of the remainder

of the society. Once this �rst stage is completed, a subgroup can secede from or sideline the

rest of the initial winning coalition if it has enough power and wishes to do so. This process

continues until a self-enforcing coalition, which does not contain any subcoalitions that wish to

engage in further rounds of eliminations, emerges. Once this coalition, which we refer to as the

ultimate ruling coalition (URC), is formed, the society�s resources are distributed according to

some pre-determined rule (for example, resources may be distributed among the members of this

1Acemoglu and Robinson (2006) provide a more detailed discussion and various examples of commitment
problems in political-decision making. The term weakly-institutionalized polities is introduced in Acemoglu,
Robinson, and Verdier (2004) to describe societies in which institutional rules do not constrain political interactions
among various social groups or factions.
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coalition according to their powers). This simple game formalizes the two key consequences of

weak institutions mentioned above: (1) binding agreements on how resources will be distributed

are not possible; (2) subcoalitions cannot commit to not sidelining their fellow members in a

particular coalition.2

Our main results are as follows. First, we characterize the equilibria of this class of games

under general conditions. We show that a ruling coalition always exists and is �generically�

unique. Moreover, the equilibrium always satis�es some natural axioms that are motivated

by the power and self-enforcement considerations mentioned above. Therefore, our analysis

establishes the equivalence between an axiomatic approach to the formation of ruling coalitions

(which involves the characterization of a mapping that determines the ruling coalition for any

society and satis�es a number of natural axioms) and a noncooperative approach (which involves

characterizing the subgame perfect equilibria of a game of coalition formation). We also show

that the URC can be characterized recursively. Using this characterization, we establish the

following results on the structure of URCs.

1. Despite the simplicity of the environment, the URC can consist of any number of players,

and may include or exclude the most powerful individuals in the society. Consequently, the

equilibrium payo¤ of an individual is not monotonic in his power. The most powerful will

belong to the ruling coalition only if he is powerful enough to win by himself or weak enough to

be a part of a smaller self-enforcing coalition.

2. An increase in �, that is, an increase in the degree of supermajority needed to eliminate

opponents, does not necessarily lead to larger URCs, because it stabilizes otherwise non-self-

enforcing subcoalitions, and as a result, destroys larger coalitions that would have been self-

enforcing for lower values of �.

3. Self-enforcing coalitions are generally �fragile.� For example, under majority rule (i.e.,

� = 1=2), adding or subtracting one player from a self-enforcing coalition necessarily makes it

non-self-enforcing.

4. Nevertheless, URCs are (generically) continuous in the distribution of power across indi-

viduals in the sense that a URC remains so when the powers of the players are perturbed.

5. Coalitions of certain sizes are more likely to emerge as the URC. For example, with

majority rule (� = 1=2) and a su¢ ciently equal distribution of powers among individuals, the

URC must have size 2k � 1 where k is an integer (i.e., 1, 3, 7, 15,...). A similar formula for the
size of the ruling coalition applies when � > 1=2.

2The game also introduces the feature that once a particular group of individuals has been sidelined, they
cannot be brought back into the ruling coalition. This feature is adopted for tractability.
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We next illustrate some of the main interactions using a simple example.

Example 1 Consider two agents A and B. Denote their powers 
A > 0 and 
B > 0 and assume

that the decision-making rule requires power-weighted majority, that is, � = 1=2. This implies

that if 
A > 
B, then starting with the coalition fA;Bg, the agent A will form a majority by

himself. Conversely, if 
A < 
B, then agent B will form a majority. Thus, �generically� (i.e.,

as long as 
A 6= 
B), one of the members of the two-person coalition can secede and form a

subcoalition that is powerful enough within the original coalition. Since each agent will receive

a higher share of the scarce resources in a coalition that consists of only himself than in a

two-person coalition, two-person coalitions are generically not self-enforcing.

Now, consider a coalition consisting of three agents, A, B and C with powers 
A, 
B and


C , and suppose that 
A < 
B < 
C < 
A + 
B. Clearly, no two-person coalition is self-

enforcing. The lack of self-enforcing subcoalitions of fA;B;Cg implies that fA;B;Cg is itself
self-enforcing. To see this, suppose, for example, that fA;Bg considers seceding from fA;B;Cg.
They can do so since 
A + 
B > 
C . However, we know from the previous paragraph that the

subcoalition fA;Bg is itself not self-enforcing, since after this coalition is established, agent B
would secede or eliminate A. Anticipating this, agent A would not support the subcoalition

fA;Bg. A similar argument applies for all other subcoalitions. Moreover, since agent C is

not powerful enough to secede from the original coalition by himself, the three-person coalition

fA;B;Cg is self-enforcing and will be the ruling coalition.
Next, consider a society consisting of four individuals, A;B;C and D. Suppose that we

have 
A = 3; 
B = 4; 
C = 5; and 
D = 10. D�s power is insu¢ cient to eliminate the coalition

fA;B;Cg starting from the initial coalition fA;B;Cg. Nevertheless, D is stronger than any

two of A;B;C. This implies that any three-person coalition that includes D would not be self-

enforcing. Anticipating this, any two of fA;B;Cg would decline D�s o¤er to secede. However,
fA;B;Cg is self-enforcing, thus the three agents would be happy to eliminate D. Therefore, in
this example, the ruling coalition again consists of three individuals, but interestingly excludes

the most powerful individual D.

The most powerful individual is not always eliminated. Consider the society with 
A =

2; 
B = 4; 
C = 7 and 
D = 10. In this case, among the three-person coalitions only fB;C;Dg
is self-enforcing, and it will eliminate the weakest individual, A, and become the ruling coalition.

This example also illustrates why three-person coalitions (22 � 1 = 3) may be more likely than
two-person (and also four-person) coalitions.3

3 It also shows that in contrast to approaches with unrestricted side-payments (e.g., Riker, 1962), the ruling
coalition will not generally be a minimal winning coalition (the unique minimum winning coalition is fA;Dg,
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Although our model is abstract, it captures a range of economic forces that appear salient

in nondemocratic, weakly-institutionalized polities. The historical example of Stalin�s Soviet

Russia illustrates this in a particularly clear manner. The Communist Party Politburo was the

highest ruling body of the Soviet Union. All top government positions were held by its members.

Though formally its members were elected at Party meetings, for all practical purposes the

Politburo determined the fates of its members, as well as those of ordinary citizens. Soviet

archives contain execution lists signed by Politburo members; sometimes a list would contain

one name, but some lists from the period of 1937-39 contained hundreds or even thousands

names (Conquest, 1968).

Of 40 Politburo members (28 full, 12 non-voting) appointed between 1919 and 1952, only 12

survived through 1952. Of these 12, 11 continued to hold top positions after Stalin�s death in

March 1953. There was a single Politburo member (Petrovsky) in 33 years who left the body

and survived. Of the 28 deaths, there were 17 executions decided by the Politburo, 2 suicides,

1 death in prison immediately after arrest, and 1 assassination.

To interpret the interactions among Politburo members through the lenses of our model,

imagine that the Politburo consists of �ve members, and to illustrate our main points, suppose

that their powers are given by f3; 4; 5; 10; 20g. It can be veri�ed that with � = 1=2, this �ve-

member coalition is self-enforcing. However, if either of the lower power individuals, 3; 4; 5; or

10; dies or is eliminated, then the ruling coalition consists of the singleton, 20. If, instead, 20

dies, the ultimate ruling coalition becomes f3; 4; 5g and eliminates the remaining most powerful
individual 10. This is because 10 is unable to form an alliance with less powerful players. While

the reality of Soviet politics in the �rst half of the century is naturally much more complicated,

this simple example sheds light on three critical episodes.

The �rst episode is the suicides of two members of the Politburo, Tomsky and Ordzhonikidze,

during 1937-38. An immediate implication of these suicides was a change in the balance of power,

something akin to the elimination of 5 in the f3; 4; 5; 10; 20g example above. In less than a year,
11 current or former members of Politburo were executed. Consistent with the ideas emphasized

in our model, some of those executed in 1939 (e.g., Chubar, Kosior, Postyshev, and Ezhov) had

earlier voted for the execution of Bukharin and Rykov in 1937. The second episode followed

the death of Alexei Zhdanov in 1948 from a heart attack. Until Zhdanov�s death, there was a

period of relative �peace�: no member of this body had been executed in nine years. Monte�ore

(2003) describes how the Zhdanov�s death immediately changed the balance in the Politburo.

The death gave Beria and Malenkov the possibility to have Zhdanov�s supporters and associates

which has the minimum power among all winning coalitions).
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in the government executed.4 The third episode followed the death of Stalin himself in March

1953. Since the bloody purge of 1948, powerful Politburo members conspired in resisting any

attempts by Stalin to have any of them condemned and executed. When in the Fall of 1952,

Stalin charged two old Politburo members, Molotov and Mikoian, with being the �enemies of

the people,�the other members stood �rm and blocked a possible trial (see Monte�ore, 2003, or

Gorlizki and Khlevniuk, 2004). After Stalin�s death, Beria became the most powerful politician

in Russia. He was immediately appointed the �rst deputy prime-minister as well as the head

of the ministry of internal a¤airs and of the ministry of state security, the two most powerful

ministries in the USSR. His ally Malenkov was appointed prime-minister, and no one succeeded

Stalin as the Secretary General of the Communist Party. Yet in only 4 months, the all-powerful

Beria fell victim of a military coup by his fellow Politburo members, was tried and executed. In

terms of our simple example with powers f3; 4; 5; 10; 20g, Beria would correspond to 10. After
20 (Stalin) is out of the picture, f3; 4; 5g becomes the ultimate ruling coalition, so 10 must be
eliminated.

Similar issues arise in other dictatorships when top �gures were concerned with others becom-

ing too powerful. These considerations also appear to be particularly important in international

relations, especially when agreements have to be reached under the shadow of the threat of

war (e.g., Powell, 1999). For example, following both World Wars, many important features of

the peace agreements were in�uenced by the desire that the emerging balance of power among

states should be self-enforcing. In this context, small states were viewed as attractive because

they could combine to contain threats from larger states but they would be unable to become

dominant players. Similar considerations were paramount after Napoleon�s ultimate defeat in

1815. In this case, the victorious nations designed the new political map of Europe at the

Vienna Congress, and special attention was paid to balancing the powers of Britain, Germany

and Russia, to ensure that �... their equilibrium behaviour... maintain the Vienna settlement�

(Slantchev, 2005).5

Our paper is related to models of bargaining over resources, particularly in the context of

political decision-making (e.g., models of legislative bargaining such as Baron and Ferejohn,

1989, Calvert and Dietz, 1996, Jackson and Moselle, 2002). Our approach di¤ers from these

papers, since we do not impose any speci�c bargaining structure and focus on self-enforcing

4 In contrast to the two other episodes from the Soviet Politburo we discuss here, the elimination of the
associates of Zhadanov could also be explained by competition between two groups within the Politburo rather
than by competition among all members and lack of commitment, which are the ideas emphasized by our model.

5Other examples of potential applications of our model in political games are provided in Pepinsky (2007),
who uses our model to discuss issues of coalition formation in nondemocratic societies.
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ruling coalitions.6

More closely related to our work are the models of on equilibrium coalition formation, which

combine elements from both cooperative and noncooperative game theory (e.g., Peleg, 1980,

Hart and Kurz, 1983, Greenberg and Weber, 1993, Chwe, 1994, Bloch, 1996, Mariotti, 1997,

Ray, 2007, Ray and Vohra, 1997, 1999, 2001, Seidmann andWinter, 1998, Konishi and Ray, 2001,

Maskin, 2003, Eguia, 2006, Pycia, 2006). The most important di¤erence between our approach

and the previous literature on coalition formation is that, motivated by political settings, we

assume that the majority (or supermajority) of the members of the society can impose their

will on those players who are not a part of the majority. This feature both changes the nature

of the game and also introduces �negative externalities�as opposed to the positive externalities

and free-rider problems upon which the previous literature focuses (Ray and Vohra, 1999, and

Maskin, 2003). A second important di¤erence is that most of these works assume the possibility

of binding commitments (Ray and Vohra, 1997, 1999), while we suppose that players have

no commitment power. Despite these di¤erences, there are important parallels between our

results and the insights of this literature. For example, Ray (1979) and Ray and Vohra (1997,

1999) emphasize that the internal stability of a coalition in�uences whether it can block the

formation of other coalitions, including the grand coalition. In the related context of risk-sharing

arrangements, Bloch, Genicot, and Ray (2006) show that stability of subgroups threatens the

stability of a larger group.7 Another related approach to coalition formation is developed by

Moldovanu and Winter (1995), who study a game in which decisions require appoval by all

members of a coalition and show the relationship of the resulting allocations to the core of a

related cooperative game.8 Finally, Skaperdas (1998) and Tan and Wang (1999) investigate

coalition formation in dynamic contests. Nevertheless, none of these papers study self-enforcing

coalitions in political games without commitment, or derive existence, generic uniqueness and

characterization results similar to those in our paper.

The rest of the paper is organized as follows. Section 2 introduces the formal setup. Section

3 provides our axiomatic treatment. Section 4 characterizes subgame perfect equilibria of the

6See also Perry and Reny (1994), Moldovanu and Jehiel (1999), and Gomes and Jehiel (2005) for models of
bargaining with a coalition structure.

7 In this respect, our paper is also related to work on �coalition-proof�Nash equilibrium or rationalizability,
e.g., Bernheim, Peleg, and Whinston (1987), Moldovanu (1992), Ambrus (2006). These papers allow deviations
by coalitions in noncooperative games, but impose that only stable coalitions can form. In contrast, these
considerations are captured in our model by the game of coalition formation and by the axiomatic analysis.

8Our game can also be viewed as a �hedonic game� since the utility of each player is determined by the
composition of the ultimate coalition he belongs to. However, it is not a special case of hedonic games de�ned
and studied in Bogomolnaia and Jackson (2002), Banerjee, Konishi, and Sonmez (2001), and Barbera and Gerber
(2007), because of the dynamic interactions introduced by the self-enforcement considerations. See Le Breton,
Ortuno-Ortin, and Weber (2008) for an application of hedonic games to coalition formation.
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extensive-form game of coalition formation. It then establishes the equivalence between the

ruling coalition of Section 3 and the equilibria of this extensive-form game. Section 5 contains

our main results on the nature and structure of ruling coalitions in political games. Section 6

concludes. The Appendix contains the proofs of all the results presented in the text.

2 The Political Game

Let I denote the collection of all individuals, which is assumed to be �nite. The non-empty
subsets of I are coalitions and the set of coalitions is denoted by C. In addition, for any X � I,
CX denotes the set of coalitions that are subsets of X and jXj is the number of members in X.
In each period there is a designated ruling coalition, which can change over time. The game

starts with ruling coalition N , and eventually the ultimate ruling coalition (URC) forms. We

assume that if the URC is X, then player i obtains baseline utility wi (X) 2 R. We denote
w (�) � fwi (�)gi2I .

Our focus is on how di¤erences in the powers of individuals map into political decisions. We

de�ne a power mapping to summarize the powers of di¤erent individuals in I:


 : I ! R++;

where R++ = R+ n f0g. We refer to 
i � 
 (i) as the political power of individual i 2 I.
In addition, we denote the set of all possible power mappings by R and a power mapping 


restricted to some coalition N � I by 
jN (or by 
 when the reference to N is clear). The power

of a coalition X is 
X �
P

i2X 
i.

Coalition Y � X is winning within coalition X if and only if 
Y > �
X , where � 2 [1=2; 1)
is a �xed parameter referring to the degree of (weighted) supermajority. Naturally, � = 1=2

corresponds to majority rule. Moreover, since I is �nite, there exists a large enough � (still less
than 1) that corresponds to unanimity rule. We denote the set of coalitions that are winning

within X by WX . Since � � 1=2, if Y; Z 2 WX , then Y \ Z 6= ?.
The assumption that payo¤s are given by the mapping w (�) implies that a coalition cannot

commit to a redistribution of resources or payo¤s among its members (for example, a coalition

consisting of two individuals with powers 1 and 10 cannot commit to share the resource equally

if it becomes the URC). We assume that the baseline payo¤ functions, wi (X) : I � C ! R for

any i 2 N , satisfy the following properties.

Assumption 1 Let i 2 I and X;Y 2 C. Then:
(1) If i 2 X and i =2 Y , then wi (X) > wi (Y ) [i.e., each player prefers to be part of the

URC].
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(2) For i 2 X and i 2 Y , wi (X) > wi (Y ) () 
i=
X > 
i=
Y (() 
X < 
Y ) [i.e., for

any two URCs that he is part of, each player prefers the one where his relative power is greater].

(3) If i =2 X and i =2 Y , then wi (X) = wi (Y ) � w�i [i.e., a player is indi¤erent between

URCs he is not part of ].

This assumption is natural and captures the idea that each player�s payo¤ depends positively

on his relative strength in the URC. A speci�c example of function w (�) that satis�es these
requirements is sharing of a pie between members of the ultimate ruling coalition proportional

to their power:

wi (X) =

X\fig

X

=

�

i=
X if i 2 X
0 if i =2 X . (1)

The reader may want to assume (1) throughout the text for interpretation purposes, though this

speci�c functional form is not used in any of our results or proofs.

We next de�ne the extensive-form complete information game � = (N; 
jN ; w (�) ; �), where
N 2 C is the initial coalition, 
 is the power mapping, w (�) is a payo¤ mapping that satis�es
Assumption 1, and � 2 [1=2; 1) is the degree of supermajority; denote the collection of such
games by G. Also, let " > 0 be su¢ ciently small such that for any i 2 N and any X;Y 2 C, we
have

wi (X) > wi (Y ) =) wi (X) > wi (Y ) + 2" (2)

(this holds for su¢ ciently small " > 0 since I is a �nite set). This immediately implies that for
any X 2 C with i 2 X, we have

wi (X)� w�i > ". (3)

The extensive form of the game � = (N; 
jN ; w (�) ; �) is as follows. Each stage j of the game
starts with some ruling coalition Nj (at the beginning of the game N0 = N). Then the stage

game proceeds with the following steps:

1. Nature randomly picks agenda setter aj;q 2 Nj for q = 1.

2. [Agenda-setting step] Agenda setter aj;q makes proposal Pj;q 2 CNj , which is a subcoalition
of Nj such that aj;q 2 Pj;q (for simplicity, we assume that a player cannot propose to eliminate
himself).

3. [Voting step] Players in Pj;q vote sequentially over the proposal (we assume that players in

Nj n Pj;q automatically vote against this proposal). More speci�cally, Nature randomly chooses
the �rst voter, vj;q;1, who then casts his vote vote ~v (vj;q;1) 2 f~y; ~ng (Yes or No), then Nature
chooses the second voter vj;q;2 6= vj;q;1, etc. After all jPj;qj players have voted, the game proceeds
to step 4 if players who supported the proposal form a winning coalition within Nj (i.e., if

fi 2 Pj;q : ~v (i) = ~yg 2 WNj ), and otherwise it proceeds to step 5.
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4. If Pj;q = Nj , then the game proceeds to step 6. Otherwise, players from Nj n Pj;q are
eliminated and the game proceeds to step 1 with Nj+1 = Pj;q (and j increases by 1 as a new

transition has taken place).

5. If q < jNj j, then next agenda setter aj;q+1 2 Nj is randomly picked by Nature among

members of Nj who have not yet proposed at this stage (so aj;q+1 6= aj;r for 1 � r � q), and the
game proceeds to step 2 (with q increased by 1). If q = jNj j, the game proceeds to step 6.

6. Nj becomes the ultimate ruling coalition. Each player i 2 N receives total payo¤

Ui = wi (Nj)� "
X

1�k�j
Ifi2Nkg, (4)

where If�g is the indicator function taking the value of 0 or 1.

The payo¤ function (4) captures the idea that an individual�s overall utility is the di¤erence

between the baseline wi (�) and disutility from the number of transitions (rounds of elimination)

this individual is involved in. The arbitrarily small cost " can be interpreted as a cost of

eliminating some of the players from the coalition or as an organizational cost that individuals

have to pay each time a new coalition is formed. Alternatively, " may be viewed as a means

to re�ne out equilibria where order of moves matters for the outcome. Note that � is a �nite

game: the total number of moves, including those of Nature, does not exceed 4 jN j3. Notice
also that this game form introduces sequential voting in order to avoid issues of individuals

playing weakly-dominated strategies. Our analysis below will establish that the main results

hold regardless of the speci�c order of votes chosen by Nature.9

3 Axiomatic Analysis

Before characterizing the equilibria of the dynamic game �, we take a brief detour and introduce

four axioms motivated by the structure of the game �. Although these axioms are motivated

by game �, they can also be viewed as natural axioms to capture the salient economic forces

discussed in the introduction. The analysis in this section identi�es an outcome mapping � : G �
C that satis�es these axioms and determines the set of (admissible) URCs corresponding to each
game �. This analysis will be useful for two reasons. First, it will reveal certain attractive

features of the game presented in the previous section. Second, we will show in the next section

that equilibrium URCs of this game coincide with the outcomes picked by the mapping �.

More formally, consider the set of games � = (N; 
jN ; w (�) ; �) 2 G. Holding 
;w and �

�xed, consider the correspondence � : C � C de�ned by � (N) = � (N; 
jN ; w; �) for any N 2 C.
9See Acemoglu, Egorov, and Sonin (2006) both for the analysis of a game with simultaneous voting and a

stronger equilibrium notion, and for an example showing how, in the absence of the cost " > 0, the order of moves
may matter.
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We adopt the following axioms on � (or alternatively on �).

Axiom 1 (Inclusion) For any X 2 C, � (X) 6= ? and if Y 2 � (X), then Y � X.

Axiom 2 (Power) For any X 2 C, Y 2 � (X) only if Y 2 WX .

Axiom 3 (Self-Enforcement) For any X 2 C, Y 2 � (X) only if Y 2 � (Y ).

Axiom 4 (Rationality) For any X 2 C, for any Y 2 � (X) and for any Z � X such that

Z 2 WX and Z 2 � (Z), we have that Z =2 � (X) () 
Y < 
Z .

Motivated by Axiom 3, we de�ne the notion of a self-enforcing coalition as a coalition that

�selects itself�. This notion will be used repeatedly in the rest of the paper.

De�nition 1 Coalition X 2 P (I) is self-enforcing if X 2 � (X).

Axiom 1, inclusion, implies that � maps into subcoalitions of the coalition in question (and

that it is de�ned, i.e., � (X) 6= ?). It therefore captures the feature introduced in � that players
that have been eliminated (sidelined) cannot rejoin the ruling coalition. Axiom 2, the power

axiom, requires a ruling coalition be a winning coalition. Axiom 3, the self-enforcement axiom,

captures the key interactions in our model. It requires that any coalition Y 2 � (X) should be
self-enforcing according to De�nition 1. This property corresponds to the notion that in terms

of game �, if coalition Y is reached along the equilibrium path, then there should not be any

deviations from it. Finally, Axiom 4 requires that if two coalitions Y; Z � X are both winning

and self-enforcing and all players in Y \Z strictly prefer Y to Z, then Z =2 � (X) (i.e., Z cannot
be the selected coalition). Intuitively, all members of winning coalition Y (both those in Y \ Z
by assumption and those in Y nZ because they prefer to be in the URC) strictly prefer Y to Z;

hence, Z should not be chosen in favor of Y . This interpretation allows us to call Axiom 4 the

Rationality Axiom. In terms of game �, this axiom captures the notion that, when he has the

choice, a player will propose a coalition in which his payo¤ is greater.

At the �rst glance, Axioms 1�4 may appear relatively mild. Nevertheless, they are strong

enough to pin down a unique mapping �. Moreover, under the following assumption, these

axioms also imply that this unique mapping � is single valued.

Assumption 2 The power mapping 
 is generic in the sense that if for any X;Y 2 C, 
X = 
Y

implies X = Y . We also say that coalition N is generic or that numbers f
igi2N are generic if

mapping 
jN is generic.

10



Intuitively, this assumption rules out distributions of powers among individuals such that two

di¤erent coalitions have exactly the same total power. Notice that mathematically, genericity

assumption is without much loss of generality since the set of vectors f
igi2I 2 R
jIj
++ that are

not generic has Lebesgue measure 0 (in fact, it is a union of a �nite number of hyperplanes in

RjIj++).

Theorem 1 Fix a collection of players I, a power mapping 
, a payo¤ function w (�) such that
Assumption 1 holds, and � 2 [1=2; 1). Then:

1. There exists a unique mapping � that satis�es Axioms 1�4. Moreover, when 
 is generic

(i.e. under Assumption 2), � is single-valued.

2. This mapping � may be obtained by the following inductive procedure. For any k 2 N, let
Ck = fX 2 C : jXj = kg. Clearly, C = [k2NCk. If X 2 C1, then let � (X) = fXg. If � (Z) has
been de�ned for all Z 2 Cn for all n < k, then de�ne � (X) for X 2 Ck as

� (X) = argmin
A2M(X)[fXg


A, (5)

where

M (X) = fZ 2 CX n fXg : Z 2 WX and Z 2 � (Z)g . (6)

Proceeding inductively � (X) is de�ned for all X 2 C.

The intuition for the inductive procedure is as follows. For each X, (6) de�nes M (X) as

the set of proper subcoalitions which are both winning and self-enforcing. Equation (5) then

picks the coalitions inM (X) that have the least power. When there are no proper winning and

self-enforcing subcoalitions, M (X) is empty and X becomes the URC), which is captured by

(5). The proof of this theorem, like all other proofs, is in the Appendix.

Theorem 1 establishes not only that � is uniquely de�ned, but also that when Assumption

2 holds, it is single-valued. In this case, with a slight abuse of notation, we write � (X) = Y

instead of � (X) = fY g.

Corollary 1 Take any collection of players I, power mapping 
, payo¤ function w (�), and
� 2 [1=2; 1). Let � be the unique mapping satisfying Axioms 1�4. Then for any X;Y; Z 2 C,
Y; Z 2 � (X) implies 
Y = 
Z . Coalition N is self-enforcing, that is, N 2 � (N), if and only if
there exists no coalition X � N , X 6= N , that is winning within N and self-enforcing. Moreover,

if N is self-enforcing, then � (N) = fNg.

Corollary 1, which immediately follows from (5) and (6), summarizes the basic results on self-

enforcing coalitions. In particular, Corollary 1 says that a coalition that includes a winning and
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self-enforcing subcoalition cannot be self-enforcing. This captures the notion that the stability

of smaller coalitions undermines the stability of larger ones.

As an illustration to Theorem 1, consider again three players A, B and C and suppose that

� = 1=2. For any 
A < 
B < 
C < 
A + 
B, Assumption 2 is satis�ed and it is easy to see

that fAg, fBg, fCg, and fA;B;Cg are self-enforcing coalitions, whereas � (fA;Bg) = fBg,
� (fA;Cg) = � (fB;Cg) = fCg. In this case, � (X) is a singleton for any X. On the other hand,
if 
A = 
B = 
C , all coalitions except fA;B;Cg would be self-enforcing, while � (fA;B;Cg) =
ffA;Bg ; fB;Cg ; fA;Cgg in this case.

4 Equilibrium Characterization

We now characterize the Subgame Perfect Equilibria (SPE) of game � de�ned in Section 2 and

show that they correspond to the ruling coalitions identi�ed by the axiomatic analysis in the

previous section. The next subsection provides the main results. We then provide a sketch of

the proofs. The formal proofs are contained in the Appendix.

4.1 Main Results

The following two theorems characterize the Subgame Perfect Equilibrium (SPE) of game � =

(N; 
jN ; w; �) with initial coalition N . As usual, a strategy pro�le � in � is a SPE if � induces
continuation strategies that are best responses to each other starting in any subgame of �,

denoted �h, where h denotes the history of the game, consisting of actions in past periods

(stages and steps).

Theorem 2 Suppose that � (N) satis�es Axioms 1-4 (cfr. (5) in Theorem 1). Then, for any

K 2 � (N), there exists a pure strategy pro�le �K that is an SPE and leads to URC K in at

most one transition. In this equilibrium player i 2 N receives payo¤

Ui = wi (K)� "Ifi2KgIfN 6=Kg: (7)

This equilibrium payo¤ does not depend on the random moves by Nature.

Theorem 2 establishes that there exists a pure strategy equilibrium leading to any coalition

that is in the set � (N) de�ned in the axiomatic analysis of Theorem 1.10 This is intuitive in view

of the analysis in the previous section: when each player anticipates members of a self-enforcing

ruling coalition to play a strategy pro�le such that they will turn down any o¤ers other than K

10 It can also be veri�ed that Theorem 2 holds even when " = 0. The assumption that " > 0 is used in Theorem
3.
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and they will accept K, it is in the interest of all the players in K to play such a strategy for any

history. This follows because the de�nition of the set � (N) implies that only deviations that

lead to ruling coalitions that are not self-enforcing or not winning could be pro�table. But the

�rst option is ruled out by induction while a deviation to a non-winning URC will be blocked

by su¢ ciently many players. The payo¤ in (7) is also intuitive. Each player receives his baseline

payo¤ wi (K) resulting from URC K and then incurs the cost " if he is part of K and if the

initial coalition N is not equal to K (because in this latter case, there will be one transition).

Notice that Theorem 2 is stated without Assumption 2 and does not establish uniqueness. The

next theorem strengthens these results under Assumption 2.

Theorem 3 Suppose Assumption 2 holds and suppose � (N) = K. Then any (pure or mixed

strategy) SPE results in K as the URC. The payo¤ player i 2 N receives in this equilibrium is

given by (7).

Since Assumption 2 holds, the mapping � is single-valued (with � (N) = K). Theorem 3

then shows that even though the SPE may not be unique in this case, any SPE will lead to

K as the URC. This is intuitive in view of our discussion above. Because any SPE is obtained

by backward induction, multiplicity of equilibria results only when some player is indi¤erent

between multiple actions at a certain nod. However, as we show, this may only happen when a

player has no e¤ect on equilibrium play and his choice between di¤erent actions has no e¤ect on

URC (in particular, since � is single-valued in this case, a player cannot be indi¤erent between

actions that will lead to di¤erent URCs).

It is also worth noting that the SPE in Theorems 2 and 3 is �coalition-proof�. Since the

game � incorporates both dynamic and coalitional e¤ects and is �nite, the relevant concept of

coalition-proofness is Bernheim, Peleg, and Whinston�s (1987) Perfectly Coalition-Proof Nash

Equilibrium (PCPNE). This equilibrium re�nement requires that the candidate equilibrium

should be robust to deviations by coalitions in all subgames when the players take into account

the possibility of further deviations. Since � introduces more general coalitional deviations

explicitly, it is natural to expect the SPE in � to be PCPNE. Indeed, if Assumption 2 holds, it

is straightforward to prove that the set of PCPNE coincides with the set of SPE.11

4.2 Sketch of the Proofs

We now provide an outline of the argument leading to the proofs of the main results presented

in the previous subsection and we present two key lemmas that are central for these theorems.

11A formal proof of this result follows from Lemma 2 below and is available from the authors upon request.
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Consider the game � and let � be as de�ned in (5). Take any coalition K 2 � (N). We will
outline the construction of the pure strategy pro�le �K which will be a SPE and lead to K as

the URC.

Let us �rst rank all coalitions so as to �break ties�(which are possible, since we have not yet

imposed Assumption 2). In particular, n : C  !
�
1; : : : ; 2jIj � 1

	
be a one-to-one mapping such

that for any X;Y 2 C, 
X > 
Y ) n (X) > n (Y ), and if for some X 6= K we have 
X = 
K ,

then n (X) > n (K) (how the ties among other coalitions are broken is not important). With

this mapping, we have thus ranked (enumerated) all coalitions such that stronger coalitions are

given higher numbers, and coalition K receives the smallest number among all coalitions with

the same power. Now de�ne the mapping � : C ! C as

� (X) = argmin
Y 2�(X)

n (Y ) . (8)

Intuitively, this mapping picks an element of � (X) for any X and satis�es � (N) = K. Also,

note that � is a projection in the sense that � (� (X)) = � (X). This follows immediately since

Axiom 3 implies � (X) 2 � (� (X)) and Corollary 1 implies that � (� (X)) is a singleton.
The key to constructing a SPE is to consider o¤-equilibrium path behavior. To do this,

consider a subgame in which we have reached a coalition X (i.e., j transitions have occurred

and Nj = X) and let us try to determine what the URC would be if proposal Y is accepted

starting in this subgame. If Y = X, then the game will end, and thus X will be the URC. If,

on the other hand, Y 6= X, then the URC must be some subset of Y . Let us de�ne the strategy

pro�le �K such that the URC will be � (Y ). We denote this (potentially o¤-equilibrium path)

URC following the acceptance of proposal Y by  X (Y ), so that

 X (Y ) =

�
� (Y ) if Y 6= X;
X otherwise.

(9)

By Axiom 1 and equations (8) and (9), we have that

X = Y ()  X (Y ) = X: (10)

We will introduce one �nal concept before de�ning pro�le �K . Let FX (i) denote the �fa-

vorite�coalition of player i if the current ruling coalition is X. Naturally, this will be the weakest

coalition among coalitions that are winning within X, that are self-enforcing and that include

player i. If there are several such coalitions, the de�nition of FX (i) picks the one with the

smallest n, and if there are none, it picks X itself. Therefore,

FX (i) = argmin
Y 2fZ:Z�X;Z2WX ;�(Z)=Z;Z3ig[fXg

n (Y ) . (11)
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Similarly, we de�ne the �favorite� coalition of players Y � X starting with X at the current

stage. This is again the weakest coalition among those favored by members of Y , thus

FX (Y ) =

(
argmin

fZ:9i2Y :FX(i)=Zg
n (Z) if Y 6= ?;

X otherwise.
(12)

Equation (12) immediately implies that

For all X 2 C : FX (?) = X and FX (X) = � (X) . (13)

The �rst part is true by de�nition. The second part follows, since for all i 2 � (X), � (X)

is feasible in the minimization (11), and it has the lowest number n among all winning self-

enforcing coalitions by (8) and (5) (otherwise there would exist a self-enforcing coalition Z that

is winning within X and satis�es 
Z < 
�(X), which would imply that � violates Axiom 4).

Therefore, it is the favorite coalition of all i 2 � (X) and thus FX (X) = � (X).

Now we are ready to de�ne pro�le �K . Take any history h and denote the player who is

supposed to move after this history a = a (h) if after h, we are at an agenda-setting step, and

v = v (h) if we are at a voting step deciding on some proposal P (and in this case, let a be the

agenda-setter who made proposal P ). Also denote the set of potential agenda setters at this

stage of the game by A. Finally, recall that ~n denotes a vote of �No�and ~y is a vote of �Yes�.

Then �K is the following simple strategy pro�le where each agenda setter proposes his favorite

coalition in the continuation game (given current coalition X) and each voter votes �No�against

proposal P if the URC following P excludes him or he expects another proposal that he will

prefer to come shortly.

�K =

8>><>>:
agenda-setter a proposes P = FX (a) ;

voter v votes

8<: ~n
if either v =2  X (P ) or
v 2 FX (A) , P 6= FX (A [ fag) , and 
FX(A) � 
 X(P );

~y otherwise.
(14)

In particular, notice that v 2 FX (A) and P 6= FX (A [ fag) imply that voter v is part of a
di¤erent coalition proposal that will be made by some future agenda setter at this stage of

the game if the current voting fails, and 
FX(A) � 
 X(P ) implies that this voter will receive

weakly higher payo¤ under this alternative proposal. This expression makes it clear that �K is

similar to a �truth-telling�strategy; each individual makes proposals according to his preferences

(constrained by what is feasible) and votes truthfully.

With the strategy pro�le �K de�ned, we can state the main lemma, which will essentially

constitute the bulk of the proof of Theorem 2. For this lemma, also denote the set of voters
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who already voted �Yes�at history h by V +, the set of voters who already voted �No�by V �.

Then, V = P n (V + [ V � [ fvg) denotes the set of voters who will vote after player v.

Lemma 1 Consider the subgame �h of game � after history h in which there were exactly jh

transitions and let the current coalition be X. Suppose that strategy pro�le �K de�ned in (14)

is played in �h. Then:

(a) If h is at agenda-setting step, the URC is R = FX (A [ fag); if h is at voting step
and V + [ fi 2 fvg [ V : i votes ~y in �Kg 2 WX , then the URC is R =  X (P ); and otherwise

R = FX (A).

(b) If h is at the voting step and proposal P will be accepted, player i 2 X receives payo¤

Ui = wi (R)� "
�
jh + IfP 6=Xg

�
Ifi2Pg + IfR 6=PgIfi2Rg

��
. (15)

Otherwise (if proposal P will be rejected or if h is at agenda-setting step), then player i 2 X
receives payo¤

Ui = wi (R)� "
�
jh + IfR 6=XgIfi2Rg

�
. (16)

The intuition for the results in this lemma is straightforward in view of the construction

of the strategy pro�le �K . In particular, part (a) de�nes what the URC will be. This follows

immediately from �K . For example, if we are at an agenda-setting step, then the URC will be the

favorite coalition of the set of remaining agenda setters, given by A[fag. This is an immediate
implication of the fact that according to the strategy pro�le �K , each player will propose his

favorite coalition and voters will vote ~n (�No�) against current proposals if the strategy pro�le

�K will induce a more preferred outcome for them in the remainder of this stage. Part (b)

simply de�nes the payo¤ to each player as the di¤erence between the baseline payo¤, wi (R), as

a function of the URC R de�ned in part (a), and the costs associated with transitions.

Given Lemma 1, Theorem 2 then follows if strategy pro�le �K is a SPE (because in this case

URC will be K and it will be reached with at most one transition). With �K de�ned in (14), it

is clear that no player can pro�tably deviate in any subgame.

The next lemma strengthens Lemma 1 for the case in which Assumption 2 holds by estab-

lishing that any SPE will lead to the same URC and payo¤s as those in Lemma 1.

Lemma 2 Suppose Assumption 2 holds and � (N) = fKg. Let �K be de�ned in (14). Then

for any SPE � (in pure or mixed strategies) and for any history h, the equilibrium plays induced

by � and by �K in the subgame �h will lead to the same URC and to identical payo¤s for each

player.

Since � (N) = fKg, Theorem 3 follows as an immediate corollary of this lemma (with h = ?).
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5 The Structure of Ruling Coalitions

In this section, we present several results on the structure of URCs. Given the equivalence

result (Theorems 2 and 3), we will make use of the axiomatic characterization in Theorem

1. Throughout, unless stated otherwise, we �x a game � = (N; 
;w (�) ; �) with w satisfying

Assumption 1 and � 2 [1=2; 1). In addition, to simplify the analysis in this section, we assume
throughout that Assumption 2 holds and we also impose:

Assumption 3 For no X;Y 2 C such that X � Y the equality 
Y = �
X is satis�ed.

Assumption 3 guarantees that a small perturbation of a non-winning coalition Y does not

make it winning. Similar to Assumption 2, this assumption fails only in a set of Lebesgue

measure 0 (in fact, it coincides with Assumption 2 when � = 1=2). All proofs are again

provided in the Appendix.

5.1 Robustness

We start with the result that the set of self-enforcing coalitions is open (in the standard topol-

ogy); this is not only interesting per se but facilitates further proofs. Note that for game

� = (N; 
;w (�) ; �), a power mapping 
 (or more explicitly 
jN ) is given by a jN j-dimensional
vector f
igi2N � R

jN j
++. Denote the subset of vectors f
igi2N that satisfy Assumptions 2 and 3

by A (N), and the subset of A (N) for which �
�
N; f
igi2N ; w; �

�
= N (i.e., the subset of power

distributions for which coalition N is stable) by S (N) and let N (N) = A (N) n S (N).

Lemma 3 1. The set of power allocations that satisfy Assumptions 2 and 3, A (N), its subsets
for which coalition N is self-enforcing, S (N), and its subsets for which coalition N is not self-

enforcing, N (N), are open sets in RjN j++. The set A (N) is also dense in R
jN j
++:

2. Each connected component of A (N) lies entirely within either S (N) or N (N).

An immediate corollary of Lemma 3 is that if the distributions of powers in two di¤erent

games are �close,�then these two games will have the same URC and also that the inclusion of

su¢ ciently weak players will not change the URC. To state and prove this proposition, endow

the set of mappings 
, R, with the sup-metric, so that (R; �) is a metric space with �(
; 
0) =
supi2I j
i � 
0ij. A �-neighborhood of 
 is f
0 2 R : � (
; 
0) < �g.

Proposition 1 Consider � = (N; 
;w (�) ; �) with � 2 [1=2; 1). Then:
1. There exists � > 0 such that if 
0 : N ! R++ lies within �-neighborhood of 
, then

� (N; 
;w; �) = � (N; 
0; w; �).
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2. There exists �0 > 0 such that if �0 2 [1=2; 1) satis�es j�0 � �j < �0, then � (N; 
;w; �) =

� (N; 
;w; �0).

3. Let N = N1 [N2 with N1 and N2 disjoint. Then, there exists � > 0 such that for all N2
with 
N2 < �, � (N1) = � (N1 [N2).

This proposition is intuitive in view of the results in Lemma 3. It implies that URCs have

some degree of continuity and will not change as a result of small changes in power or in the

rules of the game.

5.2 Fragility of Self-Enforcing Coalitions

Although the structure of ruling coalitions is robust to small changes in the distribution of power

within the society, it may be fragile to more sizeable shocks. The next proposition shows that

in fact the addition or the elimination of a single member of the self-enforcing coalition turns

out to be such a sizable shock when � = 1=2.

Proposition 2 Suppose � = 1=2 and �x a power mapping 
 : I ! R++. Then:

1. If coalitions X and Y such that X \ Y = ? are both self-enforcing, then coalition X [ Y
is not self-enforcing.

2. If X is a self-enforcing coalition, then X [ fig for i =2 X and X n fig for i 2 X are not

self-enforcing.

The most important implication is that, under majority rule � = 1=2, the addition or the

elimination of a single agent from a self-enforcing coalition makes this coalition no longer self-

enforcing. This result motivates our interpretation in the Introduction of the power struggles in

Soviet Russia following random deaths of Politburo members.

5.3 Size of Ruling Coalitions

Proposition 3 Consider � = (N; 
;w (�) ; �).
1. Suppose � = 1=2, then for any n and m such that 1 � m � n, m 6= 2, there exists a set of

players N , jN j = n, and a generic mapping of powers 
 such that j� (N)j = m. In particular,

for any m 6= 2 there exists a self-enforcing ruling coalition of size m. However, there is no

self-enforcing coalition of size 2.

2. Suppose that � > 1=2, then for any n and m such that 1 � m � n,there exists a set of

players N , jN j = n, and a generic mapping of powers 
 such that j� (N)j = m.
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These results show that one can say relatively little about the size and composition of URCs

without specifying the power distribution within the society further (except that when � = 1=2,

coalitions of size 2 are not self-enforcing). However, this is largely due to the fact that there can

be very unequal distributions of power. For the potentially more interesting case in which the

distribution of power within the society is relatively equal, much more can be said about the

size of ruling coalitions. In particular, the following proposition shows that, as long as larger

coalitions have more power and there is majority rule (� = 1=2), only coalitions of size 2k � 1
for some integer k (i.e., coalitions of size 3, 7, 15, etc.) can be the URC (Part 1). Part 2 of the

proposition provides a su¢ cient condition for this premise (larger coalitions are more powerful)

to hold. The rest of the proposition generalizes these results to societies with values of � > 1=2.

Proposition 4 Consider � = (N; 
;w (�) ; �) with � 2 [1=2; 1).
1. Let � = 1=2 and suppose that for any two coalitions X;Y 2 C such that jXj > jY j we have


X > 
Y (i.e., larger coalitions have greater power). Then � (N) = N if and only if jN j = km

where km = 2m � 1, m 2 Z. Moreover, under these conditions, any ruling coalition must have
size km = 2m � 1 for some m 2 Z.

2. For the condition 8X;Y 2 C : jXj > jY j ) 
X > 
Y to hold, it is su¢ cient that there

exists some � > 0 such that
jN jX
j=1

���
j
�
� 1
��� < 1: (17)

3. Suppose � 2 [1=2; 1) and suppose that 
 is such that for any two coalitions X � Y � N

such that jXj > � jY j (jXj < � jY j ; resp.) we have 
X > �
Y (
X < �
Y ; resp.). Then

� (N) = N if and only if jN j = km;� where k1;� = 1 and km;� = bkm�1;�=�c + 1 for m > 1,

where bzc denotes the integer part of z.
4. There exists � > 0 such that maxi;j2N

�

i=
j

	
< 1 + � implies that jXj > � jY j (jXj <

� jY j ; resp.) whenever 
X > �
Y (
X < �
Y ; resp.). In particular, coalition X 2 C is self-
enforcing if and only if jXj = km;� for some m (where km;� is de�ned in Part 3).

This proposition shows that although it is impossible to make any general claims about

the size of coalitions without restricting the distribution of power within the society, a tight

characterization of the structure of the URC is possible when individuals are relatively similar

in terms of their power.

5.4 Power and the Structure of Ruling Coalitions

One might expect that an increase in �� the supermajority requirement� cannot decrease the

size of the URC. One might also expect that if an individual increases his power (either exoge-
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nously or endogenously), this should also increase his payo¤. However, both of these are generally

not true. Consider the following simple example: let w (�) be given by (1). Then coalition (3; 4; 5)
is self-enforcing when � = 1=2; but is not self-enforcing when 4=7 < � < 7=12, because (3; 4)

is now a self-enforcing and winning subcoalition. Next, consider game � with � = 1=2 and �ve

players A;B;C;D;E with powers 
A = 
0A = 2, 
B = 
0B = 10, 
C = 
0C = 15, 
D = 
0D = 20,


E = 21, and 

0
E = 40. Then � (N; 
;w; �) = fA;D;Eg, while � (N; 
0; w; �) = fB;C;Dg, so

player E, who is the most powerful player in both cases, belongs to � (N; 
;w; �) but not to

� (N; 
0; w; �).

We summarize these results in the following proposition (proof omitted).

Proposition 5 1. An increase in � may reduce the size of the ruling coalition. That is, there

exists a society N , a power mapping 
 and �; �0 2 [1=2; 1), such that �0 > � but for all X 2
� (N; 
;w; �) and X 0 2 � (N; 
;w; �0), jXj > jX 0j and 
X > 
X0.

2. There exists a society N , � 2 [1=2; 1), two mappings 
; 
0 : N ! R++ satisfying 
i = 
0i

for all i 6= j, 
j < 
0j such that j 2 � (N; 
;w; �), but j =2 � (N; 
0; w; �). Moreover, this result
applies even when j is the most powerful player in both cases, i.e. 
0i = 
i < 
j < 
0j for all

i 6= j.

Intuitively, higher � turns certain coalitions that were otherwise non-self-enforcing into self-

enforcing coalitions. But this implies that larger coalitions are now less likely to be self-enforcing

and less likely to emerge as the ruling coalition. This, in turn, makes larger coalitions more

stable. The �rst part of the proposition therefore establishes that greater power or �agreement�

requirements in the form of supermajority rules do not necessarily lead to larger ruling coalitions.

The second part implies that being more powerful may be a disadvantage, even for the most

powerful player. This is for the intuitive reason that other players may prefer to be in a coalition

with less powerful players so as to receive higher payo¤s.

This latter result raises the question of when the most powerful player will be part of the

ruling coalition. This question is addressed in the next proposition.

Proposition 6 Consider the game � (N; 
;w (�) ; �) with � 2 [1=2; 1), and suppose that


1; : : : ; 
jN j is an increasing sequence. If 
jN j 2
�
�
PjN j�1

j=2 
j= (1� �) ; �
PjN j�1

j=1 
j= (1� �)
�
,

then either coalition N is self-enforcing or the most powerful individual, jN j, is not a part of the
URC.
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6 Concluding Remarks

We presented an analysis of political coalition formation in nondemocratic societies. The ab-

sence of strong institutions regulating political decision-making in such societies implies that

individuals competing for power cannot make binding promises (for example, they will be un-

able to commit to a certain distribution of resources in the future) and they will also be unable

to commit to abide by the coalitions they have formed. This latter feature implies that once

a particular ruling coalition has formed, a subcoalition can try to sideline some of the original

members. These considerations imply that ruling coalitions in nondemocratic societies should

be self-enforcing, in the sense that there should not exist a self-enforcing subcoalition that can

sideline some of the members of this ruling coalition. This implies that coalition formation in

such political games must be forward-looking; at each point, individuals have to anticipate how

future coalitions will behave. Despite this forward-looking element, we showed that self-enforcing

ruling coalitions can be determined in a relatively straightforward manner. In particular, we

presented both an axiomatic analysis and a noncooperative game of coalition formation, and

established that both approaches lead to the same set of self-enforcing ruling coalitions. More-

over, because such coalitions can be characterized recursively (by induction), it is possible to

characterize the key properties of self-enforcing ruling coalitions in general societies.

Our main results show that such ruling coalitions always exist and that they are generically

unique. Moreover, a coalition will be a self-enforcing ruling coalition if and only if it does not

possess any subcoalition that is su¢ ciently powerful and self-enforcing. We also demonstrated

that, although equilibrium ruling coalitions are robust to small perturbations, the elimination

of a member of a self-enforcing coalition corresponds to a �large� shock and may change the

nature of the ruling coalition dramatically. This result provides us with a possible interpretation

for the large purges that took place in Stalin�s Politburo following deaths of signi�cant �gures.

Finally, we showed that although ruling coalitions can, in general, be of any size, once we

restrict attention to societies where power is relatively equally distributed, we can make strong

predictions on the size of ruling coalitions (for example, with majority rule, � = 1=2, the ruling

coalition must be of the size 2k � 1, where k is an integer).
Naturally, the result that the ultimate ruling coalition always exists and is genetically unique

depends on some of our assumptions. In particular, the assumption that there is no commitment

to future divisions of resources is crucial both for the uniqueness and the characterization results.

Other assumptions can be generalized, however, without changing the major results in the paper.

For instance, the payo¤ functions can be generalized so that individuals may sometimes wish to
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be part of larger coalitions, without a¤ecting our main results.

Other interesting areas of study in this context relate to some of the results presented in

Section 5. For example, we saw that individuals with greater power may end up worse o¤. This

suggests that individuals may voluntarily want to relinquish their power (for example, their

guns) or they may wish to engage in some type of power exchange before the game is played.

Some of these issues were discussed in the working paper version of our paper, Acemoglu, Egorov

and Sonin (2006), and developing these themes in the context of more concrete problems appears

to be a fruitful area for future research. The two most important challenges in future research

are to extend these ideas to games that are played repeatedly and are subject to shocks, and to

relax the assumption that individuals that are sidelined have no say in future decision-making.

Relaxing the latter assumption is particularly important to be able to apply similar ideas to

political decision-making in democratic societies.
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Appendix

Proof of Theorem 1: Consider �rst the properties of the setM (X) in (6) and the mapping

� (X) in (5) (Step 1). We then prove that � (X) satis�es Axioms 1�4 (Step 2) and that this is

the unique mapping satisfying Axioms 1�4 (Step 3). Finally, we establish that when Assumption

2 holds, � is single valued (Step 4). These four steps together prove both parts of the theorem.

Step 1: Note that at each step of the induction procedure, M (X) is well-de�ned because

Z in (6) satis�es jZj < jXj and thus � has already been de�ned for Z. The argmin set in (5) is
also well de�ned, because it selects the minimum of a �nite number of elements (this number is

smaller than 2jXj; X is a subset of I, which is �nite). Non-emptiness follows, since the choice
set includes X. This implies that this procedure uniquely de�nes some mapping � (which is

uniquely de�ned, but not necessarily single-valued).

Step 2: Take any X 2 C. Axiom 1 is satis�ed, because either � (X) = X (if jXj = 1) or is
given by (5), so � (X) contains only subsets of X such that � (X) 6= ?. Furthermore, in both
cases � (X) contains only winning (within X) coalitions, and thus Axiom 2 is satis�ed.

To verify that Axiom 3 is satis�ed, take any Y 2 � (X). Either Y = X or Y 2 M (X). In

the �rst case, Y 2 � (X) = � (Y ), while in the latter, Y 2 � (Y ) by (6).
Finally, Axiom 4 holds trivially when jXj = 1, since there is only one winning coalition. If

jXj > 1, take Y 2 � (X) and Z � X, such that Z 2 WX and Z 2 � (Z). By construction of
� (X), we have that

Y 2 argmin
A2M(X)[fXg


A:

Note also that Z 2M (X) [ fXg from (6). Then, if

Z =2 argmin
A2M(X)[fXg


A;

we must have 
Z > 
Y , and vice versa, which completes the proof that Axiom 4 holds.

Step 3: We next prove that Axioms 1�4 de�ne a unique mapping �. Suppose that there

exist � and �0 6= � that satisfy these axioms. Then, Axioms 1 and 2 imply that if jXj = 1, then
� (X) = �0 (X) = X; this is because � (X) 6= ? and � (X) � CX and the same applies to �0 (X).
Therefore, there must exist k > 1 such that for any A with jAj < k, we have � (A) = �0 (A),

and there exists X 2 C, jXj = k, such that � (X) 6= �0 (X). Without loss of generality, suppose

Y 2 � (X) and Y =2 �0 (X). Take any Z 2 �0 (X) (such Z exists by Axiom 1 and Z 6= Y by

hypothesis). We will now derive a contradiction by showing that Y =2 � (X).
We �rst prove that 
Z < 
Y . If Y = X, then 
Z < 
Y follows immediately from the

fact that Z 6= Y and Z � X (by Axiom 1). Now, consider the case Y 6= X, which implies
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jY j < k (since Y � X). By Axioms 2 and 3, Y 2 � (X) implies that Y 2 WX and Y 2 � (Y );
however, since jY j < k, we have � (Y ) = �0 (Y ) (by the hypothesis that for any A with jAj < k,

� (A) = �0 (A)) and thus Y 2 �0 (Y ). Next, since Z 2 �0 (X), Y 2 WX , Y 2 �0 (Y ) and

Y =2 �0 (X), Axiom 4 implies that 
Z < 
Y .

Note also that Z 2 �0 (X) implies (from Axioms 2 and 3) that Z 2 WX and Z 2 �0 (Z).

Moreover, since 
Z < 
Y , Z 6= X and therefore jZj < k (since Z � X). This again yields

Z 2 � (Z) by hypothesis. Since Y 2 � (X) ; Z 2 � (Z) ; Z 2 WX ; 
Z < 
Y , Axiom 4 implies

that Z 2 � (X). Since Z 2 � (X) ; Y 2 � (Y ) ; Y 2 WX ; 
Z < 
Y , Axiom 4 implies that

Y =2 � (X), yielding a contradiction. This completes the proof that Axioms 1�4 de�ne at most
one mapping.

Step 4: Suppose Assumption 2 holds. If jXj = 1, then � (X) = fXg and the conclusion
follows. If jXj > 1, then � (X) is given by (5); since under Assumption 2 there does not exist

Y; Z 2 C such that 
Y = 
Z ,

argmin
A2M(X)[fXg


A

must be a singleton. Consequently, for any jXj, � (X) is a singleton and � is single-valued. This
completes the proof of Step 4. �

Proof of Lemma 1: This lemma is proved by induction on the maximum length of histories

of � (the number of steps in subgame �h).

Base. If �h includes one last step only, this means that the current coalition is some X and

the current step is voting by the last voter v is voting over the last agenda setter�s proposal

P = X. In this case, � implies that the URC must be R = X =  X (X) = FX (?) and it does

not depend on v�s vote. Moreover, there are no more eliminations, hence each player i who was

not eliminated before receives wi (R)� "jh, which coincides with both (15) and (16).
Step. Suppose that the result is proven for all proper subgames of �h. Consider two cases.

Case 1: The current step is voting. Then, proposal P will be accepted if and only if

V +[fi 2 fvg [ V : i votes ~y in �Kg 2 WX (recall the de�nitions of V , V � and V + from the text

as the set of future voters, the set of those that have voted ~n and the set of those that have voted

~y respectively). If P is accepted, the URC will beX if P = X, while if P 6= X, the game will have

a transition to P , after which the URC will be FP (P ) = � (P ) by induction (recall that after

transition the game proceeds to an agenda-setting step). In both cases, the URC R =  X (P ).

If P = X, player i 2 X gets wi (X) � "jh, which equals (15). If P 6= X, player i 2 P receives

wi (R)�"
�
jh + 1 + IfR 6=PgIfi2Rg

�
, which in this case equals (15), while player i 2 X nP obtains

w�i � "jh, which again equals (15) because i =2 � (P ) � P . On the other hand, if proposal P is

rejected, then the game ends when the voting ends if A = ? (then R = X = FX (?) = FX (A)

24



and each player i 2 X gets wi (R) � "jh, which equals (16)) or, if A 6= ?, the game continues
with some b 2 X as agenda-setter and the remaining set of agenda-setters being B = A n fbg.
In the latter case, we know by induction that R = FX (B [ fbg) = FX (A) will be the URC, and

the payo¤ player i 2 X receives is given by (16).

Case 2: The current step is agenda-setting; suppose player a is to propose P = FX (a).

Note �rst that such P satis�es  X (P ) = P . Indeed, this automatically holds if P = X, while

if P 6= X, then  X (P ) = � (P ), but for P = FX (a) 6= X we must have � (P ) = P by (11), so

 X (P ) = P . Consider two subpossibilities. First, suppose P = FX (A [ fag). Then, as (14)
suggests, each player i 2  X (P ) will vote ~y. Note that  X (P ) is necessarily winning within
X: if P = X it follows from X =  X (P ) 2 WX , while if P 6= X, then, as we just showed,

 X (P ) = P = FX (a) which is winning by (11). This means that if proposal P = FX (A [ fag),
it is accepted, and R = P = FX (A [ fag) both in the case P = X and P 6= X (in the latter case,

R =  X (P ) by induction, and  X (P ) = P ). Payo¤s in this case are given by (16) because there

are no more transitions if P = X and exactly one more transition if P 6= X, and only players in

P get the additional �". Second, consider the case P 6= FX (A [ fag). Then 
FX(A) � 
 X(P ),

for 
FX(A) > 
 X(P ) would imply that minimum in (12) for Y = A [ fag 6= ? is reached at

FX (a) =  X (P ) = P and thus P = FX (A [ fag) which leads to a contradiction. But then,
as (14) suggests, all players in FX (A) 2 WX will vote against proposal P , and thus P will be

rejected. We know by induction that then R = FX (A) and the payo¤s are given by (16). This

completes the proof of Lemma 1. �
Proof of Theorem 2: Pro�le �K involves only pure strategies. Applying Lemma 1 to the

�rst stage where h = ?, we deduce that the URC under �K is FN (N) = � (N) = K, and

payo¤s are given by (16) which equals (7) because jh = 0 (there were no eliminations before

and N = X, K = R). The theorem is therefore proved if we establish that pro�le �K is a SPE.

To do this we show that there is no pro�table one-shot deviation, which is su¢ cient since � is

�nite.

Suppose, to obtain a contradiction, that there is a one-shot pro�table deviation after history

h; since only one player moves at each history, this is either voter v or agenda-setter a. Let us

start with the former case, which is then subdivided into two subcases.

Subcase 1: suppose voter v votes ~y in �K (this means v 2  X (P ) � P ), but would be

better o¤ if he voted ~n. In pro�le �K , the votes of players who vote after voter v (those in

V ) do not depend on the vote of player v. Hence, if proposal P is accepted in equilibrium,

deviating to ~n can result in rejection, but not vice versa. This deviation may only be pro�table

if voter v is pivotal, so we restrict attention to this case. From Lemma 1, the URC will be
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 X (P ) if proposal P is accepted and FX (A) if P is rejected; the number of transitions will be

between 0 and 2 (including transition from X to P if P 6= X) in the �rst case and either 0 or

1 in the second case, so the number of transitions matters only if wv ( X (P )) = wv (FX (A))

(see (2)). Let us prove that v 2 FX (A), 
FX(A) � 
 X(P ), and P 6= FX (A [ fag). First,
since deviation is pro�table, v 2 FX (A) (recall that v 2  X (P ) simply because v votes ~y in
�K). Second, if instead 
FX(A) > 
 X(P ), this would imply wv (FX (A)) < wv ( X (P )) due to

Assumption 1. Third, if instead P = FX (A [ fag), then  X (P ) = P (for in this case either

P = X or P = FX (i) for some i 2 X; the �rst case is trivial while the second is considered in
the proof of Lemma 1). But we just showed that either 
FX(A) < 
 X(P ) or 
FX(A) = 
 X(P ).

In the �rst case, the minimum in (12) for Y = A [ fag cannot be achieved at  X (P ) =
P because n (FX (A)) < n ( X (P )) and FX (A) is feasible in this minimization problem, so

P 6= FX (A [ fag) which is a contradiction. In the second case, wv (FX (A)) = wv ( X (P )),

and since FX (A) 6= X if and only if  X (P ) 6= X (FX (A) = X 6=  X (P ) would contradict


FX(A) = 
 X(P ), and so would FX (A) 6= X =  X (P )), the number of additional transitions is

the same. Hence, deviation to ~n is not pro�table because with or without this deviation player v

would get wv (FX (A))� "
�
jh + IfFX(A) 6=Xg

�
. This contradiction proves that P 6= FX (A [ fag).

This, together with v 2 FX (A) and 
FX(A) � 
 X(P ) implies that voter v must vote ~n in pro�le
�K , which contradicts the assumption that he votes ~y.

Subcase 2: suppose that voter v votes ~n in �K , but would be better o¤ voting ~y. Again,

this deviation does not change other voters�votes, it can only change the URC from FX (A)

to  X (P ) and is only pro�table if v is pivotal. Consider two possible cases. If v =2  X (P ),

voting ~y gives v exactly w�v � " (jh + 1) (v 2 P , so v is part of transition from X to P , and

Lemma 1 implies that transition from P to  X (P ) 6= P will proceed in one step, so v will

participate in exactly one more transition). Voting ~n will then result in at most one additional

transition, so v obtains a payo¤ no less than wv (FX (A)) � " (jh + 1). This implies that the
payo¤ of player v from voting ~n is at least as large as his payo¤ from deviating to ~y, thus

deviation is not pro�table. On the other hand, if v 2  X (P ), then, as implied by equation

(14), v 2 FX (A), 
FX(A) � 
 X(P ), and P 6= FX (A [ fag). By Lemma 1, if v votes ~n, the
URC is FX (A) and he receives payo¤ wv (FX (A)) � "

�
jh + IfFX(A) 6=Xg

�
; if he votes ~y, the

URC is  X (P ) and he receives wv ( X (P ))� "
�
jh + IfP 6=Xg

�
1 + If X(P ) 6=Pg

��
. But 
FX(A) �


 X(P ) implies wv (FX (A)) � wv ( X (P )), so the deviation could only be pro�table for v if

IfFX(A) 6=Xg > IfP 6=Xg
�
1 + If X(P ) 6=Pg

�
. This can only be true if FX (A) 6= X and  X (P ) = P =

X. In this case, however, strict inequality 
FX(A) < 
 X(P ) holds, and therefore wv (FX (A)) >

wv ( X (P )). Then (2) implies that deviation for v is not pro�table. This completes the proof
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that no one-shot deviation by a voter may be pro�table.

The remaining case is where agenda-setter a has a best response Q 6= P , and P = FX (a)

does not belong to the best response set. Consider two subcases. Subcase 1: suppose coalition

P is accepted if proposed; in that case, Q cannot be rejected under pro�le �K . The reason is

as follows: if Q were rejected, then the URC would be FX (A). If i 2 FX (A), then coalition
FX (A) is feasible in minimization problem (11), which means that wa (FX (A)) � wa (P ). If

this inequality is strict, so wa (FX (A)) < wa (P ), then deviation to Q is not pro�table; if

wa (FX (A)) = wa (P ), then the either FX (A) = P = X or neither FX (A) nor P equals X, but

in both cases a participates in the same number (0 or 1, respectively) of extra transitions, so

utility from proposing P and Q is the same and the deviation is not pro�table either. If, however,

i =2 FX (A), then proposing Q will give a payo¤ w�a � "jh while proposing P will give at least

wa (P )�" (jh + 1) (again,  X (P ) = P for P = FX (a)), so deviation is again not pro�table. This

proves that Qmust be accepted, which immediately implies that  X (Q) 2 WX (only members of

 X (Q) vote for Q in �K , see (14)), and then Q 2 WX because  X (Q) � Q. We next prove that
 X (Q) = Q. Suppose, to obtain a contradiction, that  X (Q) 6= Q; this immediately implies

Q 6= X and thus  X (Q) = � (Q). If a proposed  X (Q) instead of Q, it would be accepted, too.

Moreover, the fact that � is a projection implies that  X ( X (Q)) =  X (� (Q)) = � (� (Q)) =

� (Q) =  X (Q). In addition, any player i who votes ~y if Q is proposed is part of  X (Q), and

therefore would participate in voting for  X (Q); moreover, he would vote ~y under �K in that

case, too, because  X (Q) 6= FX (A [ fag) implies Q 6= FX (A [ fag) (otherwise Q would satisfy
 X (Q) = Q), and from (14) one can see that anyone who votes ~n if  X (Q) is proposed would

also vote ~n if Q were proposed. Therefore,  X (Q) would be accepted if proposed, but proposing

 X (Q) would result in only one transition while proposing Q would result in two. Agenda-setter

a must be in  X (Q), so proposing  X (Q) is better than proposing Q, which contradicts the

assumption that Q is a best response for a and establishes that  X (Q) = Q. Finally, for a to

propose Q, a 2 Q must hold. We have proved that coalition Q is feasible in minimization (11)

for i = a, and Q 6= P implies n (P ) < n (Q). But in that case either 
P < 
Q (then a prefers

having P instead of Q as the URC, even if it means an extra transition) or 
P = 
Q (then

a is indi¤erent, because the number of transitions is the same because both P =  X (P ) and

Q =  X (Q)). These arguments together imply that deviation to Q is not pro�table for a when

P will be accepted under �K .

Subcase 2: suppose coalition P is rejected if proposed. Clearly, Q must be accepted, for

otherwise the payo¤s under the two proposals are identical and Q is not a pro�table deviation.

Since P =  X (P ) is winning within X, but is not accepted, then, from (14), 
FX(A) � 
 X(P )
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and P 6= FX (A [ fag). As in the previous case we can show that Q 2 WX ,  X (Q) = Q, and

a 2 Q. Since Q is accepted, (14) implies that either 
FX(A) > 
 X(Q) or Q = FX (A [ fag),
for otherwise members of winning coalition FX (A) would vote against Q in �K and Q would

be rejected. In both cases, n (Q) < n (P ) (in the �rst case because 
Q = 
 X(Q) < 
FX(A) �

 X(P ) = 
P , and in the second case because P = FX (a) is feasible in minimization (12) for

Y = A[fag, and P 6= Q). This means, however, that P cannot be the outcome in minimization

(11) for i = a because Q is also feasible (Q 2 WX , a 2 Q, and � (Q) = Q because  X (Q) = Q

and Q 6= X where the latter follows from n (Q) < n (P )). This, however, contradicts that

P = FX (a) by construction of pro�le �K in (14). Therefore, there is no pro�table deviation at

the agenda setting step either. This completes the proof of Theorem 2. �
Proof of Lemma 2: This proof also uses induction on the number of steps in �h.

Base: If only one step remains, then the current ruling coalition is some X, and this step

must be voting by the last voter v over proposal P = X made by the last agenda-setter.

Regardless of the vote (and therefore in either pro�le), coalition X will be the URC, and each

player i 2 X will receive payo¤ wi (X)� "jh; each players in N nX will receive the same payo¤

under both pro�les, because the intermediate coalitions and the number of transitions each

player faced is the same because histories up to the last step are identical.

Step. Take any history h and denote the �rst player to act in subgame �h by b and the

payo¤ to player i when b plays action � by Ui (�). By induction this value is the same both if

pro�le � and �K is played thereafter. Consequently, if some action is optimal for player b if

pro�le � is played in subgames of �h, the same is true if pro�le �K is played, and vice versa.

Let �K be the action played by b in pro�le �K and �0 be an action played in pro�le � with a

non-zero probability. Then both �K and �0 must yield the same payo¤ for b because both are

optimal when �K is played thereafter. Thus Ub (�K) = Ub (�0).

It therefore su¢ ces to show that both action �0 followed by equilibrium play of pro�le �K

and action �K followed by equilibrium play of the same pro�le �K result in the same URC and

the same payo¤ for all players i 2 N (then by induction, action �0 followed by equilibrium play

of pro�le � will result in the same URC and payo¤s). This is clearly true when �0 = �K . Now

consider the case where �0 6= �K . Both action �K and action �0, accompanied by equilibrium

play of pro�le �K , will result in 0, 1, or 2 additional eliminations, as follows from Lemma 1:

after the �rst elimination, if any, equilibrium play will have at most one more elimination. This,

together with (2), implies that jwb (R0)� wb (RK)j � 2" and wb (R0) = wb (RK), where R0 and

RK are URCs if �0 and �K are played by b, respectively. There are two possibilities.

First, consider the case wb (R0) = wb (RK) 6= w�b , then b 2 R0, b 2 RK , hence 
R0 = 
RK ,
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and by Assumption 2, R0 = RK , so that the URC is the same in both cases. The number of

transitions is also the same (because b participates in all transitions and is indi¤erent between

�0 and �K). If there are no more transitions, then each player i 2 X obtains utility wi (R0)�"jh
for both actions. If there is exactly one transition from X to R0, then player i 2 R0 gets

wi (R0) � " (jh + 1) and player i 2 X n R0 gets w�i � "jh. Consider the case where there are
exactly two transitions both after �0 and �K . This cannot be the case if the �rst step of �h is

agenda-setting, for in that case Lemma 1 implies that if action �K played under pro�le �K , the

equilibrium play involves only one more transition. Then the �rst step of �h is voting over some

proposal P ; moreover, both action �0 and �K will result in acceptance of this proposal, for a

rejection, again by Lemma 1, would lead to only one extra transition. But in that case the two

additional transitions are from X to P and from P to  X (P ) 6= P . This establishes that each

player i 2 X receives the same payo¤ regardless of whether b plays action �0 or �K .

Second, consider the case wb (R0) = wb (RK) = w�b . Suppose �rst that b is agenda-setter;

then action �K corresponds to making proposal P = FX (b). Then, as implied by Lemma 1, the

URC is FX (b) that b is part of (this happens if P is accepted) or FX (A) which b may or may

not be part of (this happens if P is rejected); here A is the set of would-be agenda-setters. In

the case under consideration b =2 RK , hence RK = FX (A) and Ub (�K) = w�b � "jh. Action �0 is
the proposal of some coalition Q 6= P such that b 2 Q. If Q is accepted, but b =2 R0, then b has
an extra transition to Q but is eventually eliminated, so he receives Ub (�0) = w�b � " (jh + 1)
and this contradicts Ub (�K) = Ub (�0). Therefore, Q must be rejected, the URC must be

R0 = FX (A) = RK , and each player i 2 R0 will receive wi (R0) � " (jh + 1) while i 2 X n R0
gets wi (R0)� "jh in the case of either action. Now suppose that b is voting over some proposal
P , then b 2 P . Then one of actions �0 and �K is ~y and the other ~n. For the action to matter,

proposal must be accepted if ~y is played and rejected if ~n is played (or vice versa, but this is

impossible under �K). But recall that voter b is not a member of R0 and RK . Therefore, b

votes ~y, he receives w�i � " (jh + 1) (he does not participate in the second transition, which will
happen under �K because b 2 P and b =2 R0, b =2 Rk). On the other hand, if b votes ~n, then by
Lemma 1 he receives w�i �"jh, because there is only one transition in which b is eliminated. But
this means that Ub (~y) 6= Ub (~n), so Ub (�0) 6= Ub (�K), which implies that b cannot be indi¤erent

between the two actions �0 and �K , thus yielding a contradiction.

We have therefore proved that after either of the two actions �0 and �K is played, the URC

is the same and each player i 2 X is indi¤erent. But any player i 2 N nX is indi¤erent, too,

because in this case the payo¤s are entirely determined by history h. This completes the proof

of the step of induction, and therefore of Lemma 2. �
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Proof of Theorem 3: The proof follows immediately from the application of Lemma 2 to

the entire game �, which is starting with history h = ?. The lemma then implies that the URC

in any SPE must coincide with that under the strategy pro�le �K , i.e. K, and payo¤s must be

given by (7), as implied by Lemma 2. �
Proof of Lemma 3: (Part 1) The set A (N) may be obtained from RjN j++ by subtracting

a �nite number of hyperplanes given by equations 
X = 
Y for all X;Y 2 P (N) such that

X 6= Y and by equations 
Y = �
X for all X;Y 2 P (N) such that X � Y . These hyperplanes
are closed sets (in the standard topology of RjN j++), hence, a small perturbation of powers of a

generic point preserves this property (genericity). This ensures that A (N) is an open set; it is
dense because hyperplanes have dimension lower than jN j. The proofs for S (N) and N (N) are
by induction. The base follows immediately since S (N) = R++ and N (N) = ? are open sets.
Now suppose that we have proved this result for all k < jN j. For any distribution of powers
f
igi2N , N is self-enforcing if and only if there are no proper winning self-enforcing coalitions

within N . Now take some small (in the sup-metric) perturbation of powers f
0igi2N . If this
perturbation is small, then the set of winning coalitions is the same, and, by induction, the

set of proper self-enforcing coalitions is the same as well. Therefore, the perturbed coalition

f
0ig is self-enforcing if and only if the initial coalition with powers f
ig is self-enforcing; which
completes the induction step.

(Part 2) Take any connected component A � A (N). Both S (N) \ A and N (N) \ A are

open in A in the topology induced by A (N) (and, in turn, by RjN j++) by de�nition of induced

topology. Also, (S (N) \A) \ (N (N) \A) = ? and (S (N) \A) [ (N (N) \A) = A, which,

given that A is connected, implies that either S (N) \ A or N (N) \ A is empty. Hence, A lies
either entirely within S (N) or N (N). This completes the proof. �

Proof of Proposition 1: The �rst two parts follow by induction. If N = 1, for any 
 and

�, � (N; 
;w; �) = fNg. Now suppose that this is true for all N with jN j < n; take any society

N with jN j = n. We then use the inductive procedure for determining � (N; 
;w; �), which is

described in Theorem 1. In particular, Assumptions 2 and 3 imply that the set M (N) in (6)

is identical for � (N; 
;w; �), � (N; 
0; w; �), and � (N; 
;w; �0), provided that � is su¢ ciently

small (the result self-enforcing coalitions remain self-enforcing after perturbation follows from

Lemma 3). Moreover, if � is small, then 
X > 
Y is equivalent to 
0X > 
0Y . Therefore, (5)

implies that � (N; 
;w; �) = � (N; 
0; w; �) = � (N; 
;w; �0). This completes the proof of parts

1 and 2.

The proof of part 3 is also by induction. Let jN1j = n. For n = 1 the result follows

straightforwardly. Suppose next that the result is true for n. If � is small enough, then � (N1) is
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winning within N = N1[N2; we also know that it is self-enforcing. Thus we only need to verify
that there exists no X � N1 [ N2 such that � (X) = X (i.e., X that is self-enforcing, winning

in N1 [N2 and has 
X < 
�(N1)). Suppose, to obtain a contradiction, that this is not the case

(i.e., that the minimal winning self-enforcing coalition X 2 P (N1 [N2) does not coincide with
� (N1)). Consider its part that lies within N1, X \ N1. By de�nition, 
N1 � 
�(N1) > 
X �

X\N1 , where the strict inequality follows by hypothesis. This string of inequalities implies that

X \N1 is a proper subset of N1, thus must have fewer elements than n. Then, by induction, for
small enough �, � (X \N1) = � (X) = X (since X is self-enforcing). However, � (X \N1) � N1,
and thus X � N1. Therefore, X is self-enforcing and winning within N1 (since it is winning

within N1 [ N2). This implies that 
�(N1) � 
X (since � (N1) is the minimal self-enforcing

coalition that is winning within N1). But this contradicts the inequality 
�(N1) > 
X and

implies that the hypothesis is true for n+ 1. This completes the proof of part 3. �
Proof of Proposition 2: (Part 1) Either X is stronger than Y or vice versa. The stronger

of the two is a winning self-enforcing coalition that is not equal to X [ Y . Therefore, X [ Y is

not the minimal winning self-enforcing coalition, and so it is not the URC in X [ Y .
(Part 2) For the case of adding, it follows directly from Part 1, since coalition of one player

is always self-enforcing. For the case of elimination: suppose that it is wrong, and the coalition

is self-enforcing. Then, by Part 1, adding this person back will result in a non-self-enforcing

coalition. This is a contradiction which completes the proof of Part 2. �
Proof of Proposition 3: (Part 1) Given Part 3 of Proposition 1, it is su¢ cient to show

that there is a self-enforcing coalition M of size m (then adding n �m players with negligible

powers to form coalition N would yield � (N) = � (M) = M). Let i 2 M = f1; : : : ;mg be
the set of players. If m = 1, the statement is trivial. Fix m > 2 and construct the following

sequence recursively: 
1 = 2, 
k >
Pk�1

j=1 
j for all k = 2; 3; : : : ;m� 1, 
m =
Pm�1

j=1 
j � 1. It is
straightforward to check that numbers f
igi2M are generic. Let us check that no proper winning

coalition within M is self-enforcing. Take any proper winning coalition X; it is straightforward

to check that jXj � 2, for no single player forms a winning coalition. If coalition X includes

player m (with power 
m), then it excludes some player k with k < m; his power 
k � 2 by
construction. Hence,


m =

m�1X
j=1


j � 1 >
m�1X
j=1


j � 
k � 
Xnfmg;

which means that player m is stronger than the rest, and thus coalition M is non-self-enforcing.

If X does not include 
m, then take the strongest player in X; suppose it is k, k � m � 1.
However, by construction he is stronger than all other players in X, and thus X is not self-
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enforcing. This proves that M is self-enforcing. However, if jXj = 2 and Assumption 2 holds,
then one of the players, say player i, is stronger than the other one, and thus fig is a winning
self-enforcing coalition. But then, by Corollary 1, X cannot be self-enforcing.

(Part 2) The proof is identical to Part 1. The recursive sequence should be constructed as

follows: 
1 = 2, 
k > �
Pk�1

j=1 
j for all k = 2; 3; : : : ;m� 1, 
m = �
Pm�1

j=1 
j � 1. �
Proof of Proposition 4: (Part 1) This part follows as a special case of Part 3. To see

this, note that the condition in Part 4 is satis�ed , since for any X � Y � N , jXj ? � jY j ()
jXj ? jY nXj =) 
X ? 
Y nX () 
X ? �
Y for � = 1=2. Moreover, the sequences of

km�s in Part 1 and in Part 3 are equal since k1 = 21 � 1 = 1, and if km�1 = 2m�1 � 1 then
km = 2

m � 1 = b2km�1c+ 1 and thus the desired result follows by induction.
(Part 2) Suppose, to obtain a contradiction, that the claim is false, i.e., that for some

X;Y � N such that jXj > jY j we have 
X � 
Y . Then the same inequalities hold for X
0 =

X n (X \ Y ) and Y 0 = Y n (X \ Y ), which do not intersect, so that
P

j2X0 
j �
P

j2Y 0 
j . This

implies
P

j2X0 
j=� �
P

j2Y 0 
j=�, and thus
P

j2X0
�

j=�� 1

�
+jX 0j �

P
j2Y 0

�

j=�� 1

�
+jY 0j.

Rearranging, we have

1 �
��X 0��� ��Y 0�� �X

j2Y 0

�
j
�
� 1
�
�
X
j2X0

�
j
�
� 1
�
�

X
j2X0[Y 0

���
j
�
� 1
��� .

However, X 0 and Y 0 do not intersect, and therefore this violates (17). This contradiction com-

pletes the proof of Part 2.

(Part 3) The proof is by induction. The base is trivial: a one-player coalition is self-

enforcing, and jN j = k1 = 1. Now assume the claim has been proved for all q < jN j, let us prove
it for q = jN j. If jN j = km for some m, then any winning (within N) coalition X must have

size at least � (bkm�1=�c+ 1) > km�1 (if it has smaller size then 
X < �
N ). By induction, all

such coalitions are not self-enforcing, and this means that the grand coalition is self-enforcing.

If jN j 6= km for any m, then take m such that km�1 < jN j < km. Now take the coalition of

the strongest km�1 individuals. This coalition is self-enforcing by induction. It is also winning

(this follows since km�1 � � bkm�1=�c = � (km � 1) � � jN j, which means that this coalition
would have at least � share of power if all individuals had equal power, but since this is the

strongest km�1 individuals, the inequality will be strict). Therefore, there exists a self-enforcing

winning coalition, di¤erent from the grand coalition. This implies that the grand coalition is

non-self-enforcing, completing the proof.

(Part 4) This follows from Part 3 and Proposition 3. �
Proof of Proposition 6: Inequality 
jN j > �

Pn�1
j=2 
j= (1� �) implies that any coalition

that includes jN j, but excludes even the weakest player will not be self-enforcing. The inequality
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jN j < �
Pn�1

j=2 
j= (1� �) implies that player jN j does not form a winning coalition by himself.

Therefore, either N is self-enforcing or � (N) does not include the strongest player. �
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