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Abstract

In this paper we examine the earnings covariance matrix generated
from a ten-year time series and estimate a variance components model
that parameterizes the process generating earnings. We use our estimated
variance components to test key hypotheses concerning life-cycle human
capital investment and labor supply separately for men and women. Hu-
man capital investment models predict that individuals with higher initial
earnings have lower growth rates of earnings and that earnings follow a
random growth model with individual specific rates of growth due to expe-
rience. Life-cycle labor supply models predict that variation in individual
productivity affects earnings more than hours supplied. In order to test
these hypotheses, we look for permanent individual variance components
in the growth rate of earnings and significant auto-correlation in earn-
ings over time. We also test for the presence of a common component
of variation between hours and earnings and explore how this component
contributes to earnings relative to hours. We look for evidence to support
or contradict the predictions of the models using a new data source —
a set of SIPP panels linked to administrative tax data on labor market
earnings. Our data contain Survey of Income and Program Participation
(SIPP) respondents from the five panels conducted by the Census Bureau
in the 1990s with linked W-2 wage records filed by employers with the IRS.
The sum of these wage records for a given year provides an uncapped an-
nual earnings measure. We use survey information on the number of weeks
worked full-time and part-time in a year to estimate annual hours worked.
Because of the length of the time period covered (1990-1999), the size of
the sample (approximately 230,000 individuals), and the high quality of
the earnings measure, these data offer a unique opportunity to re-visit
several classic labor economics questions and provide fresh evidence for
on-going debates.
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This research is part of a program jointly sponsored by the Census
Bureau, the Social Security Administration, and the Internal Revenue
Service to produce public use files that integrate elements of survey and
administrative data. The main goal of the program is to develop an in-
novative confidentiality protection technique that will allow the release of
microdata by preserving the confidential identities of survey respondents
while maintaining the analytic usefulness of the data. Because the pro-
posed public use files contain lifetime earnings histories from the Social
Security Administration’s master earnings file (W-2 data under IRS stew-
ardship), the data are likely to attract considerable professional interest
once released. Hence it is important to assess their analytic validity by
considering questions and models where there is considerable scientific
evidence already in the public record.

1 Introduction1

In this paper we re-visit a classic labor economics question—the intertemporal
labor supply of men—using a new source of panel data. Our purpose is two-fold.
First we intend to contribute to the general knowledge of the how individuals
make dynamic labor supply decisions and how their earnings evolve over time.
Second, we test a new type of public-use data—partially synthetic micro-data
without topcoding—in order to determine whether these data can be used in
standard micro-data analyses. It is because of this second purpose that we are
particularly interested in re-visiting a classic labor economics model. We wish
to see if this new type of data will give results that are consistent with what
has commonly been found in the past.
The particular model we will re-visit is the individual life-cycle labor supply

model. The main tenet of this model is that individuals respond to changes
in their wages (i.e., productivity) by changing their hours supplied to the labor
market and hence changing their earnings. However productivity variation
affects earnings more than hours supplied. We will test this hypothesis following
the general method used by Abowd and Card (1989). In particular we are
interested in determining whether the random component in the earnings model
will have a coefficient relative to the same component in the hours model that
is greater than one. We will also investigate the general covariance structure
of hours and earnings residuals and investigate whether they appear to contain
measurement error and whether there is significant autocorrelation across years,

1Disclaimer and acknowledgements: This report is released to inform interested parties
of ongoing research and to encourage discussion of work in progress. Any views expressed
on statistical, methodological, technical, or operational issues are those of the authors and
not necessarily those of the U.S. Census Bureau, Cornell University, or any of the project
sponsors. This work was partially supported by the National Science Foundation Grants
SES-9978093, ITR-0427889, and SES-0339191 to Cornell University (Cornell Institute for
Social and Economic Research), the National Institute on Aging, and the Alfred P. Sloan
Foundation. All of the data used in this paper are confidential data. The U.S. Census Bureau
supports external researchers’ use of these data items; please visit www.sipp.census.gov/sipp/
and click on "Access SIPP Synthetic Data."
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supporting the random walk hypothesis for the path of earnings residuals.
Our data stem from a well-known source, the Survey of Income and Program

Participation (SIPP), but have been expanded to include administrative earn-
ings records from the Social Security Administration (SSA) and the Internal
Revenue Service (IRS). These administrative records are matched to individual
survey respondents and include uncapped total earnings for every employer of
the matched respondents for the years 1978 to 2003. However because of the
sensitive and confidential nature of these data, they are not publicly releasable in
their original form. Hence, working in conjunction with IRS and SSA, the U.S.
Census Bureau has developed new disclosure protection methods that involve
creating synthetic data based on the methodology briefly described in section
3. A trial version of these linked survey-administrative records, called the SIPP
Synthetic Beta (SSB) is available for public access.2 Since the release of syn-
thetic data as a public-use product is still relatively uncommon, the agencies
involved in creating the SSB are undertaking significant testing of the data in
order to determine whether they actually reproduce the fundamental qualities
of the original data. This paper is part of that effort.

2 Background

2.1 Life-cycle Labor Supply Model

We consider a life-cycle labor supply model as developed by MaCurdy (1981).
The consumer chooses consumption and leisure in order to maximize lifetime
utility subjected to the constraint that he cannot consume more than his earn-
ings and assets over the course of his life. This problem is formally stated as:

max
TX
t=0

1

(1 + ρ)t
U [C(t), L(t)]

subject to

A(0) +
TX
t=0

R(t)N(t)W (t) =
TX
t=0

R(t)C(t)

A(0) = initial assets

R(t) = market interest rate

N(t) = L∗ − L(t)

L∗ = total time in each period

W (t) = real wage rate

C(t) = consumption

L(t) = leisure

ρ = subjective discount rate
2Details are available here: http://www.bls.census.gov/sipp/synth_data.html.
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The optimal choices of C(t) and L(t) satisfy the budget constraint as well
as the following conditions:

MUC = R(t)(1 + ρ)tλ

MUL ≥ R(t)(1 + ρ)tλW (t)

λ = Lagrange multiplier for the budget constraint

and marginal utility of wealth in period 0

The first condition states that the marginal utility of consumption must equal
the marginal utility of wealth in period 0, appropriately discounted. The second
condition says that the marginal utility of leisure must be at least equal to
the marginal utility of the value of the wage. If this second condition holds
with equality then N(t) > 0 and at least some labor will be supplied. These
conditions give rise to functions for C(t) and N(t) that give the optimal values
conditional on the marginal utility of wealth, λ, the market interest rate, the
discount rate, and the wage rate,W (t). MaCurdy refers to these as the “lamda-
constant” functions because λ summarizes everything about a person’s initial
wealth, lifetime path of wage rates, and preferences that are needed in order
to determine labor supply and consumption at any point in time. Blundell
et al. (2006) and others commonly refer to these equations as Frisch demand
(labor supply) functions because they hold the marginal utility of wealth, and
not wealth itself, constant. Besides λ, no information from outside the time
period is needed to make decisions about how much to work and how much to
consume. If one assumes a particular form of the utility function, an estimable
equation for N(t) can be developed. MaCurdy suggests the following utility
function which gives rise to the following equation for N(t).

Ui = Y1i(t) [Ci(t)]
ω1 − Y2i(t) [Ni(t)]

ω2

lnNi(t) = Fi + η
tX

k=0

[ρ− r(k)] + η lnWi(t) + ui(t)

Y2i(t) = σi + u∗i (t)

Fi = η ∗ {lnλi − σi − lnω2}

η =
1

(ω2 − 1)
ui(t) = ηu∗i (t)

r(0) = ρ, ln(1 + r(t)) ≈ r(t), ln(1 + ρ) ≈ ρ

if r(t) = r for all t, then η(ρ− r)t = η
tX

k=0

[ρ− r(k)]

Thus, an estimable equation for Ni(t) contains a person effect, a time effect, a
wage effect, and an error term. The term of interest is η which is the intertem-
poral substitution elasticity. This term tells how an individual will change her
supply of labor across time periods in response to observing changes in wage
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rates. MaCurdy describes these as “evolutionary” changes, or changes along a
wage path over the lifetime of the individual.

2.2 Our Statistical Model Following the Abowd and Card
Model

Abowd and Card (1989) further refine this model of life-cycle labor supply.
Specifically they begin with hours and earnings equations as follows:

log hit = ait + η log θit + η log λit

log git = ait + (1 + η) log θit + η log λit

where:

hit = hours of individual i in period t

git = earnings of individual i in period t

θit = wage rate for individual i in period t

ait = component controlling for individual

and time period specific preference variation

λit = marginal utility of consumption, equal to

marginal utility of wealth appropriately discounted

η = intertemporal elasticity of substitution

Next, they specify how the marginal utility of consumption develops over time
and substitute this into the hours and earnings equations:

log λit − log λit−1 = log(
1 + ρ

1 + rt
) + φit

where:

ρ = subjective discount rate

rt = real rate of return on assets between period t and t+ 1

φit = one period ahead prediction error

in log marginal utility of consumption

Substituting for the change in the marginal utility of consumption and adding
measurement error terms gives us:

∆ log git = η log

µ
1 + ρ

1 + rt

¶
+∆ait + (1 + η)∆ log θit + ηφit +∆uit

∆ log hit = η log

µ
1 + ρ

1 + rt

¶
+∆ait + η∆ log θit + ηφit +∆vit

to describe observed changes in log earnings and log hours, where:

uit = measurement error in earnings of individual i in period t

vit = measurement error in hours of individual i in period t
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We prefilter the data following the same procedures as Abowd and Card
(1989). The raw change data are adjusted by estimating a regression of changes
in log earnings and log hours on time-varying person characteristics to estimate
the fixed effects. The residuals are then taken to be the adjusted changes in log
earnings and log hours which follow:

∆ log egit = ∆eait + (1 + η)∆ logeθit + ηφit +∆uit

∆ logehit = ∆eait + η∆ logeθit + ηφit +∆vit

where the tilde denotes that the measure is adjusted for the observable char-
acteristics in the original regression. We create a balanced panel of 9 periods
(1991-1999) of observed changes in log earnings and log hours for each individ-
ual (some individuals have missing data for one or more rows of the data matrix
in order to make the balanced panel). We use the assumptions from Abowd and
Card about φit and ∆eait, namely:

Cov(φit, φit−j) = 0 for j 6= 0
∆eait = ∆ψit +∆ζit

where ψit are transitory preference shocks and ζit are permanent preference
shocks such that:

V ar(ψit) = σ2ψ
Cov(ψit, ψis) = 0 for s 6= t

Cov(ζit − ζit−1, ζit−j − ζit−j−1) = 0 for j > 0

Since η is restricted by the model to be strictly positive, the ratio (1+η)
η is

restricted to be greater than one. Abowd and Card normalize the coefficient
on the log wage rate in the hours equation to be one and define μ = (1+η)

η
as the coefficient on the log wage rate in the earnings equation. Therefore,
we can decompose the change in each of log earnings and log hours into three
identifiable additive components:

∆ log egit = μzit + ω1it + εit

∆ logehit = zit + ω2it + εit

where:

μ = (1 + η)/η

zit = η∆ log θit

ω1it = ∆uit +∆ψit
ω2it = ∆vit +∆ψit
εit = ηφit +∆ζit

The covariance structure of ω1it and ω2it are, by construction, first-order-one
moving average processes (MA(1)) with MA(1) parameter equal to −1. The εit
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term contributes only to the contemporaneous variances and covariances. This
leaves us with a block-diagonal covariance matrix of dimension 18N where N
is the number of individuals used in the estimation and the 18 × 18 non-zero
matrix along the diagonal has the following parameterization:

1 ... 10 ...

Σ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

μ2V ar(zit) + 2(σ
2
ψ + σ2u) + σ2ε ... μV ar(zit) + 2σ

2
ψ + σ2ε ...

μ2Cov(zit, zit−1)− (σ2ψ + σ2u) ... μCov(zit, zit−1)− σ2ψ ...

μ2Cov(zit, zit−2) ... μCov(zit, zit−2) ...
... ... ... ...
μV ar(zit) + 2σ

2
ψ + σ2ε ... V ar(zit) + 2(σ

2
ψ + σ2v) + σ2ε ...

μCov(zit, zit−1)− σ2ψ ... Cov(zit, zit−1)− (σ2ψ + σ2v) ...

μCov(zit, zit−2) ... Cov(zit, zit−2) ...
... ... ... ...

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

1
2
3
...
10
11
12
...

After reviewing the sample estimates of Σ shown in tables 2 and 3, we decided
to use a first-order-two (MA(2)) process to estimate the process that the wage
rate (zit) follows. The coefficients of this MA(2) process are estimated as part of
the statistical model for the complete covariance matrix of earnings and hours
changes and are reported in Tables 4 and 5.

3 Data Description: SIPP Synthetic Beta (SSB)

The project to create a new SIPP public use file began in 2001 when a spe-
cial Federal Treasury Regulation went into effect that allowed the U.S. Census
Bureau to obtain administrative earnings data from the Social Security Ad-
ministration and the Internal Revenue Service that matched to respondents in
certain SIPP panels. Census’s primary mission was to integrate the administra-
tive and survey data and make a product that would be available to researchers
interested in studying earnings and federal benefits issues. To this end, we
created an extract from the five SIPP panels conducted in the 1990s (beginning
years of 1990, 1991, 1992, 1993, 1996 respectively) and merged on the available
administrative data. We refer to these data as the gold-standard because they
represent the kind of data that would be compiled for analysis by a researcher
working in a confidential protected area at either SSA or Census.
The gold standard contains many variables not used in our analysis. For the

purposes of brevity, we will describe only the variables used here but a complete
description of the publicly available variables can be found on the SIPP home
page.3 Individuals had to be at least 15 years of age by the time of their
second SIPP interview in order to be included in the gold standard. We used
self-reported race, coded as black/non-black, gender, marital status at the time

3Please see www.sipp.census.gov/sipp/ and click on "Access SIPP Synthetic Data." Vari-
able descriptions can be found in "Technical Description SIPP Synthetic Beta."
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of the second interview or closest available interview, birthdate, and education,
where we took the highest level ever reported during the survey. These variables
were available for every individual in the gold standard. We also used indicators
for disabled, foreign born, Hispanic and continuous variables for number of kids
in the family at the time of the second interview, collected in a topical module
in different waves depending on the panel. These variables were sometimes
missing due to item non-response within the survey.
The hours variable was significantly more complicated. The SIPP collects

information on usual weekly hours for at most two jobs. We created a monthly
total hours worked variable by multiplying the usual weekly hours for each job
by 4.33 if the person worked the entire month at that job or else the fraction of
the month worked if it was a beginning or ending month. We then summed the
hours across jobs to create a monthly total. For individuals who did not miss
any of the interviews during the panel, we were able to create an annual hours
measure for years completely covered by the survey by summing these monthly
totals. However for individuals who missed interviews within a panel and for
years not covered, either in full or part, by the survey, these annual hours data
were incomplete.
The earnings variable was taken from the Detailed Earnings Records (DER)

extract from SSA’s Master Earnings File (MEF). These records included his-
torical reports of annual earnings, by employer, from 1978-2003 and were the
amounts the employer reported to the IRS in box 1 of the W-2 tax form. SIPP
respondents who either provided a Social Security Number (SSN) or did not
refuse to give one were matched against several master Census databases to
either check the validity of their SSN or attempt to fill in a missing SSN. Those
who explicitly refused to provide the survey with an SSN were not included in
this exercise. People who passed the validation process and had a “validated”
SSN were then matched against the MEF at SSA to create the earnings history.
Hence unlike hours, SIPP respondents either had a complete earnings history or
no history at all. For individuals with DER data, we created annual earnings
measures from 1990-1999 by summing the totals earned from each employer in
a year.
Finally labor market experience as of 1989 was created using the life-time

earnings histories taken from the Summary Earnings Records (SER), a separate
extract from the Master Earnings File. These records contain total wages and
salary paid to an individual from all employers, up to the maximum taxable
under FICA. These records have the advantage of beginning in 1951 and hence
are ideal for creating a number of years worked variable. Labor market expe-
rience is then increased from 1990-1999 every time an individual has a positive
earnings report in the DER.
After creating the gold standard file, we used multiple imputation methods to

complete (i.e. impute) all the missing values. There were three main reasons for
missing data. First, failure to answer the hours question within a panel; second,
lack of hours data in a year not covered by a particular panel; third, failure to
provide a valid SSN that linked to earnings and labor force experience. After
completing missing values, we synthesized the variables in the gold standard,
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with a few exceptions.4 Of the variables we use for this paper, gender and
marital status remained unsynthesized but all other variables were synthesized.
In order to preserve exact logical relations among the variables, the first step

of the missing data imputation process, and the first step of the data synthesizing
process, is to implement a binary tree of parent-child relations among all the
variables. This tree guides the execution of first, the missing data imputation
and then, the synthetic data phase. We created the binary tree to organize the
data processing by summarizing all of the assumptions and logical restrictions
that must be preserved in the final data product.
The top level of this binary tree contains all variables that exhibit no logical

dependencies on any other variables in the file, for example birth date. The
tree has nine levels. At each level below the top, variables depend upon their
parents, and are only processed when appropriate. In the intermediate levels
of the tree, a variable can be both a parent and a child, for example, whether
or not there is a second marriage is a child of the same variable for the first
marriage and a parent of the variable for the third marriage. The terminal level
and all leaves of the binary tree contain only child variables.
For each iteration of the missing data imputation phase and again during

the synthesis phase, we estimate a joint posterior predictive distribution for
all of the required variables according to the following protocol. At each node
of the parent/child tree, a statistical model is estimated for each of the vari-
ables at the same level. The statistical model is a Bayesian bootstrap, logistic
regression, or linear regression (possibly with transformed inputs). All statisti-
cal models are estimated separately for detailed groups of individuals based on
the values of categorical variables that include both demographic and economic
controls. Logistic and linear regressions also include additional linear controls
that are selected from a long list of potential right-hand-side control variables
on the basis of the Bayes Information Criterion. Once the analyst specifies the
grouping variables and their associated control variables, the estimation of a
proper posterior predictive distribution from which to impute or synthesize, as
appropriate, is fully automated. On the basis of the estimated models, and tak-
ing proper account of parameter uncertainty, each variable is imputed (missing
data phase) or synthesized (synthetic data phase) conditional on all values of all
other variables for that individual. The missing data phase included nine itera-
tions of estimation. The posterior predictive density, when estimated using the
Sequential Regression Multivariate Imputation (SRMI) method, must be fit by
iterative re-estimation of each of the equations within each of the conditioning
groups. The first iteration uses arbitrary starting values for all of the miss-
ing data, generally computed from an easily implemented Bayesian Bootstrap.

4Four variables were not synthesized: gender, marital status, type of initial OASDI benefit
(TOB initial), and type of OASDI benefit in the year 2000 (TOB 2000). We also did not
perturb the relationship between spouses. The synthetic data contains the original link
between a married individual and his or her spouse. Thus in actuality, each individual’s record
contains four additional unsynthesized variables: spouse gender, spouse marital status, spouse
TOB initial, and spouse TOB 2000. Spouse gender and marital status, by definition, do not
provide any additional information beyond the gender and marital status of the respondent
since same-sex couples were not recorded in the 1990s SIPP panels.
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Subsequent iterations use values sampled from the previous iteration’s PPD.
There is no formal test for convergence; however, experience has shown that the
process generally settles down after a few iterations. Since computation time
was a significant constraint, we did not restart the missing data PPD estimation
every time we made a minor adjustment to the data specification; instead, we
added additional iterations of the SRMI using missing data sampled from the
previous iteration’s estimated PPD. The process terminated at the ninth itera-
tion, whose PPD was used to sample all of the missing data The synthetic data
phase occurred on the tenth iteration and did not require any iteration. Four
missing data implicates were created. These constitute the completed data files
that are the inputs to the syntihesis phase. Four synthetic implicates were cre-
ated for each missing data implicate. Thus, there are a total of sixteen synthetic
implicates in the SSB. Further details about the data completion and synthesis
used to create the SSB can be found in Abowd, Stinson and Benedetto (2006).
The source SIPP records for the SSB were derived from five different SIPP

panels, each with its own sampling frame. In order to combine data from these
five sources to provide meaningful population estimates, a new weight was cre-
ated. The process is described in detail in Abowd, Stinson and Benedetto (2006).
For completeness of this exposition, we summarize the process here. The 1996
SIPP sampling frame (unit sample only) was recreated using the micro-data
from Census 2000. Every record in the SSB was matched to the same indi-
vidual in Census 2000—either exactly, based on Census internal identifiers, or
approximately based on probabilisitic record linking. We created provisional
design weights that were representative of the civilian non-institutional popula-
tion aged 18 or older as of April 1, 2000. These weights were then raked to the
standard Census population controls, which are based on sex, race, ethnicity,
and age groups as of April 2000. The final weight from this process appears on
all four missing data implicates. A synthetic version of this weight appears on
all sixteen synthetic implicates. These weights may be used to construct esti-
mates that are representative of the civilian, non-institutional population age
18 and older as of April 1, 2000. No other weights are provided on the SSB;
however, synthetic birth and death dates are available and can be used to create
samples representative of other dates if appropriate control totals are available.
In keeping with the comparative exercise that motivates this paper no weights
were used in the estimation of any of the covariance matrices reported below;
however, the weights were used in all of the analytical validity testing reported
in Abowd, Stinson and Benedetto (2006).
After the creation of the gold standard, the completion of missing data, and

the synthesis of most of the variables, we proceeded to estimate the model de-
scribed earlier in section 2. We first-differenced annual log earnings and log
total hours and then regressed these variables on marital status, education level,
male, black, disabled, foreign born, Hispanic, number of kids in the family, a
quartic in age, unrestricted time effects, and a quartic in labor force experience.
We then created the variance-covariance matrix of the residuals for each depen-
dent variable from each year from this regression and fit our model to this 18x18
matrix (the dimension of 18 comes from 9 years of data for each of 2 dependent
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variables).

4 Analytical Validity
One of the main purposes of this paper is to test whether these synthetic vari-
ables closely mimic the characteristics of their gold standard counterparts, in
other words whether analyses using these variables will produce statistically
valid results. We define statistical validity according to Rubin as:

First and foremost, for statistical validity for scientific estimands,
point estimation must be approximately unbiased for the scientific
estimands averaging over the sampling and posited nonresponse mech-
anisms. ... Second, interval estimation and hypothesis testing must
be valid in the sense that nominal levels describe operating charac-
teristics over sampling and posited nonresponse mechanisms. (1996,
p. 474)

This definition should be modified to include the phrase “confidentiality protec-
tion mechanisms” wherever “nonresponse mechanisms” appears.
Thus we run our analysis multiple times using the multiple implicates cre-

ated by the completion and synthesis processes. We combine the results from
the four completed data implicates and from the 16 synthetic implicates using
the statistical formulae described below to calculate the variances. We then
compare our estimates from the synthetic data to our estimates from the com-
pleted data, which we will euphemistically call the “truth” since it is the best
available comparison data. If the estimates are unbiased and the variances of
the estimates are such that inferences drawn about the estimates are the similar
to the inferences in the completed (i.e., “true”) data, then the data are statis-
tically valid5. We now give the formulae that we use to combine the separate
estimates from each implicate.

4.1 Missing Data Only

In our use of the classic Rubin (1987) missing data application, Ymis is imputed
m times by sampling from p (Ymis |D ) , the posterior predictive distribution of
Ymis given D, the non-missing data. The completed data consist of m sets

D(c) =
n
D,Y

(c)
mis

o
, where Y (c)

mis is the c
th draw from p (Ymis |D ) and is called

the cth implicate. To create the SSB, we sampled four times and created four
implicates D(1), D(2), D(3), and D(4). Inference is based on the following

5We compare the synthetic data to the completed data in order to separately determine how
well the synthesizer performs. If we compared the synthetic data directly to the underlying
gold standard data, the effects of completing missing values would be confounded with the
effects of synthesizing variables.
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formulae:

statistic calculated on each implicate file

q(c) = q
³
D(c)

´
.

The statistic is calculated separately for each implicate and then averaged
across implicates as the next formula indicates:

average of the statistic across implicates

q̄m =
mX
c=1

q(c)

m
.

The statistic q̄m is the new quantity of interest and will serve as the basis for
comparison with the synthetic data. Analytic validity requires that synthetic
data reproduce q̄m, on average, and that inferences made about q̄m remain the
same, as expressed by the confidence interval associated with q̄m. In order
to draw proper inferences, the correct variance measure must be used. The
variance of q̄m has two parts. The first part is commonly referred to as the
“between-implicate” variance, defined by the following formula:

variance of the statistic across implicates

bm =
mX
c=1

¡
q(c) − q̄m

¢ ¡
q(c) − q̄m

¢0
m− 1

The measure bm tells how much variation has been introduced by the multiple
draws from the posterior predictive distribution. The second component of the
overall variance of q̄m is calculated by averaging the within implicate variance
across implicates. We define the variance of q(c) for each implicate c and the
average across implicates as follows:

variance of the statistic on each implicate file

u(c) = u
³
D(c)

´
and

average variance of the statistic across implicates

ūm =
mX
c=1

u(c)

m
.

The total variance is then calculated as a weighted sum of the between implicate
variance and the average within implicate variance, defined as follows:

total variance of the average statistic across implicates

Tm = ūm +

µ
1 +

1

m

¶
bm
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When n and m are large, inference is based on (q̄m −Q) ∼ N (0, Tm) .When m
is moderate and the estimator q̄m is univariate (i.e., c = 1), inference is based
on (q̄m −Q) ∼ tνm (0, Tm) , where the degrees of freedom νm are defined as

νm = (m− 1)
Ã
1 +

ūm¡
1 + 1

m

¢
bm

!2
Proofs and further details can be found in Rubin (1987, 1996).

4.2 Missing and Partially Synthetic Data

For each completed data set, we partially synthesized r implicates by sampling
from p

¡
Yrep|D(c)

¢
. Denote the r completed partially synthetic data sets as

D(c,k). For the SSB, r = 4 and hence there were 16 synthetic implicates:
D(1,1),D(1,2),D(1,3),D(1,4)...D(4,1),D(4,2),D(4,3),D(4,4). In order to compare
to the completed data, we first calculate the statistic of interest for each of the
16 implicates:

statistic calculated on each implicate file

q(c,k) = q
³
D(c,k)

´
.

Then, we average across the four synthetic implicates that correspond to a given
missing data implicate creating q̄(1), q̄(2), q̄(3), q̄(4) according to the formula:

average of the statistic across the synthetic implicates

q̄(c) =
rX

k=1

q(c,k)

r

Finally, we average across all 16 implicates to create q̄M . This final average
can then be compared to the q̄m created from the missing data implicates only:

average of the statistic across synthetic and missing data implicates

q̄M =
mX
c=1

rX
k=1

q(c,k)

mr
=

mX
c=1

q̄(c)

m
.

The variance calculations for data that have been completed and synthesized
must also account for the additional source of variation that comes from syn-
thesizing. Thus, we calculate the “between synthetic implicate” variance using
the following formula:

variance of the statistic due to variation in synthetic implicates

b(c) =
rX

k=1

¡
q(c,k) − q̄(c)

¢ ¡
q(c,k) − q̄(c)

¢0
r − 1 .

This formula quantifies the variation introduced by differences between two
synthetic implicates that were generated from the same missing data implicate,
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i.e., deviations of the synthetic implicate from the average across both synthetic
implicates q(c,k) − q̄(c). We then average this variance over the missing data
implicates:

average of b(c) over missing data implicates

bM =
mX
c=1

rX
k=1

¡
q(c,k) − q̄(c)

¢ ¡
q(c,k) − q̄(c)

¢0
m (r − 1) =

mX
c=1

b(c)

m
.

The next source of variation comes from the multiple implicates due to missing
data completion. This variance is calculated using the deviations of the average
for a missing data implicate from the overall average, i.e., q̄(c) − q̄M . This is
the “between missing data implicate” variance:

variance of the statistic due to variation in missing data implicates

BM =
mX
c=1

¡
q̄(c) − q̄M

¢ ¡
q̄(c) − q̄M

¢0
m− 1 .

Finally, the last source of variance comes from the within implicate variance,
which is averaged across the synthetic implicates for a given missing data im-
plicate and then averaged across all the implicates according to the formulae:

variance of the statistic on each implicate file

u(c,k) = u
³
D(c,k)

´
,

average variance of the statistic across synthetic implicates

ū(c) =
rX

k=1

u(c,k)

r

and

average variance of the statistic across synthetic and missing data implicates

ūM =
mX
c=1

rX
k=1

u(c,k)

mr
=

mX
c=1

ū(c)

m

The total variance is, once again, a weighted sum of the different sources of
variation—between synthetic implicate, between missing data implicate, and
within implicate:

total variance of the average statistic across implicates

TM =

µ
1 +

1

m

¶
BM −

bM
r
+ ūM .

TM is the variance used to draw inferences about q̄M and variation introduced
by the synthetic and missing data implicates must not be so large that the
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inferences will be substantially different from those drawn using q̄m and Tm.
When n,m and r are large, inference is based on (q̄M −Q) ∼ N (0, TM ) .When
m and r are moderate and the estimator q̄M is univariate (i.e., c = 1), inference
is based on (q̄M −Q) ∼ tνM (0, TM ) where the degrees of freedom νM are defined
as

νM =
1µ

((1+ 1
m)BM)

2

(m−1)T2M
+ (bM/r)2

m(r−1)T2M

¶
Proofs and details can be found in Reiter (2004).
When estimating the first and second moments that enter the Abowd and

Card covariance models, we used the conventional estimators of means and
variance/covariances. When estimating the variance covariance matrix of these
moments, we replaced the conventional fourth-moment based estimator that
Abowd and Card used with a bootstrap estimator based on 100 bootstrap sam-
ples of the same size as the original, sampled with replacement.

5 Statistical Results
We begin by providing a brief summary of the data sample we used. We then
describe the results from estimating our model using the four completed im-
plicates. We view these results as most closely corresponding to the previous
analysis done by Abowd and Card. After discussing the implications of our
results for the economic model, we then compare the results from the completed
data to the results from the synthetic data. We end with discussions about the
analytic validity of the synthetic data.

5.1 Summary Statistics

Table 1 presents summary statistics for men who were continuously employed
from 1990 to 1999 for both the completed and synthetic data. This sample most
closely corresponds to the one analyzed by Abowd and Card; hence, it facilitates
comparisons to their work. The first thing to notice is that all of the means
agree very closely between the completed and synthetic samples except for the
annual change in log hours, which is very different in the synthetic data. This
difference signals that the models we fit below may show some discrepancies
between the completed and synthetic data, as is indeed the case.
Table 2 presents the entire variance-covariance matrix of log earnings and

log hours changes, adjusted for fixed experience and other human capital ef-
fects for the same sample of continuously employed men estimated from the
completed data. The variances and covariances of log earnings and log hours,
respectively, are displayed on the diagonal and in the lower triangle of the pan-
els. Correlations are shown in the upper triangle. The cross-covariances of log
earnings with log hours and the cross correlations are shown in separate panels.
Table 6 displays the average distance in probability measure of the t-statistics
from zero formed from independent null hypotheses that a given element of the
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covariance matrix estimated on the completed data is the same as the corre-
sponding element from the matrices estimated in Abowd & Card. Using table
6 and table 2, one can see evidence that the pattern of data in these matri-
ces is remarkably similar to the pattern for all three of the data sources that
Abowd and Card originally examined. We did not formally test for similarity;
however, neither the variance of log earnings nor the variance of log hours is
stationary. Both variables display a strong negative serial correlation at the
first lag, which is much smaller at lag 2, and is essentially zero thereafter. The
cross-correlations of log earnings and log hours, however, are much weaker in
the completed data than in any of the three sources originally studied by Abowd
and Card. It appears that the requirement that the completed data fill-in the
missing SIPP hours data (in order to prevent confidentiality compromises in
the synthetic data arising from reverse engineering of the panel source) has led
to some attenuation of the relation between earnings and hours that one finds
when using only sample individuals with complete data (as Abowd and Card,
and MaCurdy both did).
Table 3 presents the entire variance-covariance matrix of log earnings and

log hours changes estimated from the synthetic data. Table 7 gives the per-
centage overlap of 95% confidence intervals around the point estimates of the
elements of the variance-covariance matrices from the completed and synthetic
data (where the size of the confidence interval from the completed data serves as
the denominator). Examining table 7, a couple patterns become clear. First, the
log earnings covariance/correlation matrix is essentially identical to the one in
Table 2. The log hours covariance/correlation matrix is very similar to the one
in table 2. But, the cross-covariance/cross-correlation matrix in the synthetic
data is essentially zero. The synthetic data did not preserve the cross-correlation
relation between these two individual-level time series. As of this writing, we
do not have an explanation for this finding.

5.2 Structural Results from the Completed Data

Table 4 presents the results of the key structural parameters estimated for the
same sample of continuously employed men using the completed data. This table
is directly comparable to the two-component models fit by Abowd and Card.
We used the two-component model because the third component (the variance
of the contemporaneous shocks to changes in log earnings and log hours) was
consistently going to the lower boundary (zero) in our optimization routines for
both the completed and synthetic data. The critical structural parameter, μ, has
an estimated value of about 1.3 (implying a point estimate of the intertemporal
labor supply elasticity of about 3.3). The 95% confidence interval around this
estimate contains the corresponding point estimates from Abowd and Card on
the PSID and SIME/DIME for the two-component model and on the PSID,
PSID SEO excluded, and SIME/DIME for the three-component model. The
values of the combined measurement error and transitory shock components
are quite precisely estimated and imply a first-order serial correlation which is
positive but not significantly different from zero.
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5.3 Comparing Results from Synthetic Implicates to Com-
pleted Implicates

Table 5 presents results from the synthetic implicates. In the synthetic data,
the point estimate of μ is closer to one than in the completed data, and the two-
standard deviation confidence interval is actually smaller, and does not cover the
interval from Table 4. These results, which indicate that an analyst would infer
a larger intertemporal elasticity of labor supply from the synthetic data, are due
entirely to the failure of the synthesizing process to capture the properties of
the cross-covariance matrix of log earnings and log hours changes. In particular,
it suggests that the synthetic data consistently underestimate the covariance
of earnings and hours. Thus, an important goal for any re-estimation of the
data synthesizer would be to diagnose and repair this problem. On the bright
side, the 95% confidence interval around μ from the completed data entirely
covers the corresponding interval from the synthetic data, and the synthetic
data interval accounts for 46% of the completed data interval. Moreover, the
synthetic data gave qualititatively identical results on the ω components of
variance (the combined effects of measurement error and transitory preference
shocks) and had the same difficulty distinguishing the remaining component of
variance, the common economic shock. Hence, a researcher using these synthetic
data to do model selection would have arrived at the same set of models to
estimate from the completed data.

6 Conclusion
Clearly, the completion and synthesis did a very good job of preserving means
and distributions of many variables, but struggled quite a bit with the hours
arrays from the SIPP. These struggles seem largely due to the fact that there
was so much missing data with which to work and, as a result, less data on
which to build the models used in the multiple imputation process. Of course,
part of the issue is that we are still very much in the early stages of learning
how to build good models to estimate the posterior predictive distributions
used in multiple imputation for data completion and synthesis. This issue is
compounded with the fact that the SIPP Synthetic Beta project attempted
such a large scale synthesis that we were unable to dedicate a sufficient amount
of variable-specific attention to every variable in the list. Our hope is that
the broader research community will use the SSB data for a large variety of
analyses with the idea that their analyses can then also be performed by Census
staff on the confidential, completed data. The researchers would then get the
benefit of receiving the disclosable results of their analysis on the confidential
data, and we would receive the benefit of thoroughly documenting the strengths
and weaknesses of the current version of the SSB. We can then use the ever-
improving synthesis techniques and a more definitive list of what needs to be
improved to produce more analytically reliable, partially synthetic, public-use
micro-datasets in the future.
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Table1: Summary Statistics
Annual Hours and Annual Earnings Completed Data Synthetic Data
 (1999 dollars) Year Earnings Hours Earnings Hours

1990 14862 1097 15139 1033
(286) (65) (35) (37)

1991 15072 1058 15417 1025
(295) (68) (205) (33)

1992 15923 1094 16138 1044
(509) (66) (423) (26)

1993 16054 1117 16551 1062
(325) (47) (354) (29)

1994 16371 1101 16771 1056
(345) (11) (236) (16)

1995 16981 1066 17254 1028
(291) (78) (180) (71)

1996 17444 1148 17818 1101
(322) (84) (335) (16)

1997 18287 1149 18625 1088
(311) (82) (289) (24)

1998 19395 1147 19693 1091
(518) (26) (363) (17)

1999 19661 1161 21133 1068
(293) (36) (2213) (12)

Changes in Log Annual Earnings (x100) and Log 
Annual Hours (x100) Change

Change in 
Earnings

Change in 
Hours

Change in 
Earnings

Change in 
Hours

1990-1991 8.50 -9.09 8.61 4.33
(0.46) (9.15) (0.84) (1.44)

1991-1992 10.07 2.44 10.13 2.35
(0.32) (3.94) (0.86) (4.59)

1992-1993 9.32 7.68 7.13 2.36
(0.38) (8.72) (3.63) (4.81)

1993-1994 7.71 2.11 7.31 0.17
(0.48) (5.36) (1.69) (2.86)

1994-1995 6.83 -5.59 7.78 -6.61
(0.33) (6.78) (0.83) (6.53)

1995-1996 6.55 -4.75 7.08 0.63
(0.36) (24.17) (0.20) (5.33)

1996-1997 7.37 1.34 6.96 -1.79
(0.31) (17.21) (1.05) (3.06)

1997-1998 6.00 -2.77 4.51 -3.47
(0.36) (6.91) (0.84) (5.96)

1998-1999 1.51 -2.11 2.14 -8.96
(0.32) (3.85) (0.84) (2.69)

3. Demographic Characteristics
Average Age in 1991 33.50 33.92

(0.21) (0.10)
Proportion Non-white 0.07 0.08

(0.002) (0.003)
Proportion Hispanic 0.09 0.09

(0.002) (0.002)
Proportion Married 0.64 0.66

(0.004) (0.003)
Proportion No High School 0.10 0.11

(0.003) (0.005)
Proportion High School Diploma 0.33 0.33

(0.004) (0.006)
Proportion Some College 0.30 0.27

(0.006) (0.012)
Proportion College Degree 0.15 0.16

(0.005) (0.008)
Proportion Graduate Degree 0.12 0.13

(0.002) (0.005)
Avg. # Years w/ FICA Earnings 16.43 16.71

(0.19) (0.10)



Table 2, Panel 1: 
Covariance/Variance Matrix of Earnings and Hours Residuals, Completed Implicates

Earnings Variances/Covariances Along/Below Diagonal with Standard Errors in Parentheses
Correlation Coefficients Above Diagonal

1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999
Earnings 1990-1991 0.3530 -0.2982 -0.1051 -0.0416 -0.0160 -0.0078 -0.0215 -0.0002 -0.0029

(2.084)
1991-1992 -0.1026 0.3352 -0.3101 -0.0955 -0.0330 -0.0165 -0.0088 -0.0137 -0.0051

(1.261) (2.168)
1992-1993 -0.0361 -0.1039 0.3348 -0.3148 -0.0933 -0.0249 -0.0061 -0.0048 -0.0081

(0.816) (1.279) (2.088)
1993-1994 -0.0132 -0.0295 -0.0970 0.2838 -0.2221 -0.0989 -0.0301 -0.0050 -0.0100

(0.744) (0.791) (1.226) (2.067)
1994-1995 -0.0046 -0.0093 -0.0263 -0.0576 0.2370 -0.2778 -0.0945 -0.0173 -0.0081

(0.699) (0.723) (0.756) (1.188) (2.011)
1995-1996 -0.0023 -0.0047 -0.0070 -0.0257 -0.0660 0.2382 -0.2464 -0.0951 -0.0027

(0.691) (0.701) (0.724) (0.730) (1.132) (1.974)
1996-1997 -0.0061 -0.0024 -0.0017 -0.0076 -0.0219 -0.0572 0.2264 -0.2386 -0.0780

(0.694) (0.689) (0.694) (0.711) (0.717) (1.122) (1.954)
1997-1998 0.0000 -0.0038 -0.0013 -0.0013 -0.0040 -0.0221 -0.0540 0.2262 -0.2092

(0.647) (0.677) (0.665) (0.662) (0.691) (0.681) (1.112) (1.841)
1998-1999 -0.0009 -0.0016 -0.0025 -0.0029 -0.0021 -0.0007 -0.0200 -0.0536 0.2904

(0.653) (0.693) (0.678) (0.666) (0.671) (0.663) (0.700) (1.057) (1.938)



Table 2, Panel 2: 
Covariance/Variance Matrix of Earnings and Hours Residuals, Completed Implicates

Earnings Covariances with Standard Deviations in Parentheses
1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999

Hours 1990-1991 0.0270 -0.0061 -0.0076 -0.0070 -0.0013 -0.0013 -0.0017 -0.0016 -0.0012
(0.839) (0.774) (0.740) (0.723) (0.700) (0.671) (0.662) (0.655) (0.631)

1991-1992 -0.0066 0.0271 -0.0035 -0.0021 0.0013 -0.0009 0.0012 0.0006 0.0030
(0.881) (0.955) (0.879) (0.791) (0.773) (0.753) (0.762) (0.733) (0.708)

1992-1993 -0.0021 -0.0026 0.0285 -0.0035 -0.0046 -0.0007 -0.0011 0.0006 0.0005
(0.765) (0.810) (0.880) (0.789) (0.730) (0.707) (0.724) (0.700) (0.701)

1993-1994 -0.0014 -0.0083 -0.0054 0.0219 0.0003 -0.0022 0.0003 0.0013 -0.0003
(0.580) (0.577) (0.618) (0.707) (0.588) (0.563) (0.563) (0.535) (0.534)

1994-1995 -0.0016 0.0035 -0.0051 -0.0070 0.0051 0.0028 0.0009 0.0003 -0.0004
(0.591) (0.581) (0.596) (0.627) (0.625) (0.577) (0.563) (0.553) (0.558)

1995-1996 0.0015 -0.0044 -0.0002 -0.0001 0.0053 0.0068 -0.0010 -0.0010 0.0012
(0.821) (0.823) (0.827) (0.811) (0.778) (0.799) (0.779) (0.757) (0.773)

1996-1997 -0.0017 -0.0021 0.0007 -0.0001 0.0002 -0.0008 0.0096 -0.0018 -0.0006
(0.711) (0.706) (0.695) (0.668) (0.644) (0.665) (0.712) (0.649) (0.650)

1997-1998 0.0005 0.0015 0.0001 0.0011 -0.0017 -0.0013 -0.0016 0.0078 -0.0024
(0.665) (0.660) (0.665) (0.633) (0.604) (0.605) (0.608) (0.662) (0.605)

1998-1999 -0.0020 0.0002 -0.0005 0.0010 -0.0010 -0.0008 -0.0007 -0.0021 0.0097
(0.635) (0.634) (0.636) (0.617) (0.613) (0.652) (0.635) (0.600) (0.667)

Earnings Correlation Coefficients
1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999

Hours 1990-1991 0.0702 -0.0153 -0.0053 -0.0047 -0.0056 0.0031 -0.0037 0.0013 -0.0053
1991-1992 -0.0163 0.0648 -0.0067 -0.0294 0.0128 -0.0091 -0.0047 0.0043 0.0005
1992-1993 -0.0202 -0.0084 0.0726 -0.0194 -0.0186 -0.0004 0.0016 0.0002 -0.0015
1993-1994 -0.0202 -0.0055 -0.0097 0.0845 -0.0276 -0.0002 -0.0002 0.0034 0.0030
1994-1995 -0.0041 0.0038 -0.0140 0.0011 0.0220 0.0133 0.0006 -0.0056 -0.0035
1995-1996 -0.0042 -0.0025 -0.0023 -0.0095 0.0121 0.0169 -0.0020 -0.0042 -0.0026
1996-1997 -0.0054 0.0036 -0.0033 0.0014 0.0040 -0.0025 0.0262 -0.0055 -0.0025
1997-1998 -0.0052 0.0019 0.0019 0.0057 0.0011 -0.0026 -0.0050 0.0265 -0.0069
1998-1999 -0.0035 0.0078 0.0013 -0.0013 -0.0015 0.0027 -0.0014 -0.0072 0.0289



Table 2, Panel 3: 
Covariance/Variance Matrix of Earnings and Hours Residuals, Completed Implicates

Hours Variances/Covariances Along/Below Diagonal with Standard Errors in Parentheses
Correlation Coefficients Above Diagonal

1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999
Hours 1990-1991 0.4185 -0.5159 -0.0491 -0.0082 -0.0020 -0.0175 0.0151 0.0096 -0.0213

(1.968)
1991-1992 -0.2408 0.5207 -0.4042 -0.0249 -0.0120 -0.0454 0.0051 -0.0095 0.0113

(1.651) (2.356)
1992-1993 -0.0216 -0.1978 0.4601 -0.4232 -0.0976 -0.0728 -0.0297 -0.0109 0.0130

(0.765) (1.376) (2.076)
1993-1994 -0.0026 -0.0087 -0.1394 0.2358 -0.2988 -0.0486 0.0197 0.0095 -0.0069

(0.609) (0.704) (1.201) (1.358)
1994-1995 -0.0006 -0.0041 -0.0313 -0.0687 0.2242 -0.2953 -0.0003 -0.0027 -0.0084

(0.592) (0.660) (0.776) (0.886) (1.286)
1995-1996 -0.0093 -0.0270 -0.0407 -0.0194 -0.1151 0.6773 -0.5180 0.0093 -0.0733

(0.832) (0.919) (0.965) (0.803) (1.093) (2.546)
1996-1997 0.0075 0.0028 -0.0154 0.0073 -0.0001 -0.3268 0.5875 -0.3623 -0.0587

(0.689) (0.756) (0.734) (0.572) (0.568) (1.837) (2.146)
1997-1998 0.0039 -0.0043 -0.0046 0.0029 -0.0008 0.0048 -0.1729 0.3878 -0.3476

(0.698) (0.741) (0.644) (0.516) (0.537) (0.927) (1.223) (1.839)
1998-1999 -0.0086 0.0051 0.0055 -0.0021 -0.0025 -0.0376 -0.0280 -0.1350 0.3886

(0.703) (0.724) (0.645) (0.515) (0.533) (0.884) (0.872) (1.299) (2.207)



Table 3, Panel 1: 
Covariance/Variance Matrix of Earnings and Hours Residuals, Synthetic Implicates

Earnings Variances/Covariances Along/Below Diagonal with Standard Errors in Parentheses
Correlation Coefficients Above Diagonal

1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999
Earnings 1990-1991 0.3884 -0.2809 -0.0913 -0.0318 -0.0238 -0.0123 -0.0111 -0.0034 -0.0051

(0.826)
1991-1992 -0.1023 0.3414 -0.2905 -0.0849 -0.0339 -0.0213 -0.0108 -0.0107 0.0001

(0.470) (0.721)
1992-1993 -0.0337 -0.1006 0.3514 -0.3128 -0.0923 -0.0358 -0.0204 -0.0061 -0.0049

(0.332) (0.456) (0.749)
1993-1994 -0.0115 -0.0288 -0.1077 0.3375 -0.3153 -0.0881 -0.0345 -0.0232 -0.0099

(0.298) (0.304) (0.469) (0.731)
1994-1995 -0.0078 -0.0104 -0.0286 -0.0959 0.2740 -0.2277 -0.0757 -0.0214 -0.0143

(0.262) (0.256) (0.283) (0.420) (0.585)
1995-1996 -0.0038 -0.0062 -0.0105 -0.0254 -0.0593 0.2474 -0.2710 -0.0754 -0.0278

(0.238) (0.231) (0.242) (0.262) (0.327) (0.534)
1996-1997 -0.0035 -0.0032 -0.0061 -0.0102 -0.0201 -0.0683 0.2569 -0.2702 -0.0666

(0.238) (0.229) (0.237) (0.241) (0.238) (0.333) (0.551)
1997-1998 -0.0011 -0.0033 -0.0019 -0.0071 -0.0059 -0.0197 -0.0720 0.2766 -0.2548

(0.243) (0.233) (0.238) (0.236) (0.222) (0.234) (0.345) (0.597)
1998-1999 -0.0018 0.0000 -0.0016 -0.0033 -0.0043 -0.0079 -0.0192 -0.0763 0.3241

(0.254) (0.244) (0.246) (0.244) (0.227) (0.222) (0.248) (0.399) (0.715)



Table 3, Panel 2: 
Covariance/Variance Matrix of Earnings and Hours Residuals, Synthetic Implicates

Earnings Covariances with Standard Deviations in Parentheses
1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999

Hours 1990-1991 0.0036 0.0016 -0.0009 -0.0004 -0.0006 -0.0005 0.0006 0.0014 -0.0018
(0.319) (0.297) (0.293) (0.281) (0.254) (0.236) (0.236) (0.244) (0.258)

1991-1992 0.0080 0.0039 0.0008 0.0023 -0.0008 0.0006 -0.0003 0.0002 0.0015
(0.322) (0.301) (0.302) (0.290) (0.259) (0.242) (0.248) (0.253) (0.267)

1992-1993 -0.0009 0.0050 0.0032 -0.0008 0.0000 0.0012 -0.0015 -0.0005 -0.0001
(0.309) (0.295) (0.295) (0.284) (0.255) (0.239) (0.245) (0.251) (0.265)

1993-1994 -0.0018 -0.0030 0.0035 0.0023 0.0008 -0.0006 0.0017 0.0008 0.0002
(0.235) (0.227) (0.228) (0.219) (0.198) (0.184) (0.187) (0.193) (0.203)

1994-1995 -0.0004 0.0011 -0.0002 -0.0006 0.0010 0.0010 0.0005 0.0008 -0.0009
(0.226) (0.214) (0.216) (0.214) (0.193) (0.178) (0.180) (0.185) (0.196)

1995-1996 -0.0014 -0.0020 -0.0004 0.0026 0.0058 0.0027 0.0025 0.0002 0.0039
(0.375) (0.355) (0.361) (0.350) (0.316) (0.298) (0.305) (0.315) (0.339)

1996-1997 0.0003 0.0017 -0.0014 -0.0001 -0.0012 0.0028 0.0015 0.0002 -0.0001
(0.302) (0.289) (0.295) (0.285) (0.258) (0.247) (0.250) (0.261) (0.280)

1997-1998 0.0005 -0.0004 0.0007 0.0004 -0.0011 0.0002 0.0021 0.0030 0.0009
(0.271) (0.261) (0.266) (0.261) (0.235) (0.225) (0.231) (0.240) (0.260)

1998-1999 0.0004 0.0003 0.0002 0.0015 -0.0003 -0.0001 0.0003 -0.0009 0.0041
(0.313) (0.298) (0.304) (0.297) (0.268) (0.253) (0.259) (0.272) (0.292)

Earnings Correlation Coefficients
1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999

Hours 1990-1991 0.0087 0.0191 -0.0023 -0.0056 -0.0012 -0.0027 0.0007 0.0011 0.0010
1991-1992 0.0042 0.0098 0.0127 -0.0097 0.0039 -0.0041 0.0040 -0.0010 0.0008
1992-1993 -0.0024 0.0019 0.0082 0.0114 -0.0007 -0.0009 -0.0033 0.0018 0.0006
1993-1994 -0.0011 0.0059 -0.0020 0.0077 -0.0020 0.0054 -0.0001 0.0009 0.0035
1994-1995 -0.0018 -0.0023 -0.0001 0.0030 0.0037 0.0133 -0.0033 -0.0031 -0.0007
1995-1996 -0.0016 0.0017 0.0035 -0.0021 0.0039 0.0064 0.0079 0.0007 -0.0002
1996-1997 0.0019 -0.0009 -0.0045 0.0064 0.0019 0.0058 0.0042 0.0064 0.0008
1997-1998 0.0040 0.0006 -0.0013 0.0028 0.0030 0.0004 0.0004 0.0086 -0.0023
1998-1999 -0.0046 0.0039 -0.0001 0.0006 -0.0033 0.0083 -0.0002 0.0023 0.0099



Table 3, Panel 3: 
Covariance/Variance Matrix of Earnings and Hours Residuals, Synthetic Implicates

Hours Variances/Covariances Along/Below Diagonal with Standard Errors in Parentheses
Correlation Coefficients Above Diagonal

1990-1991 1991-1992 1992-1993 1993-1994 1994-1995 1995-1996 1996-1997 1997-1998 1998-1999
Hours 1990-1991 0.4392 -0.2981 -0.0800 -0.0215 0.0067 -0.0176 0.0032 -0.0138 -0.0181

(0.980)
1991-1992 -0.1336 0.4575 -0.3499 -0.0624 -0.0408 -0.0742 0.0084 0.0154 -0.0233

(0.576) (0.982)
1992-1993 -0.0355 -0.1587 0.4496 -0.3458 -0.0979 -0.1239 0.0072 -0.0096 -0.0102

(0.361) (0.630) (1.027)
1993-1994 -0.0075 -0.0222 -0.1219 0.2763 -0.3273 -0.0684 -0.0110 -0.0016 0.0096

(0.246) (0.303) (0.547) (0.663)
1994-1995 0.0022 -0.0137 -0.0327 -0.0857 0.2479 -0.2506 0.0050 0.0045 -0.0276

(0.236) (0.267) (0.351) (0.380) (0.535)
1995-1996 -0.0097 -0.0419 -0.0694 -0.0300 -0.1042 0.6974 -0.3681 -0.0591 -0.0258

(0.384) (0.415) (0.479) (0.405) (0.466) (1.362)
1996-1997 0.0015 0.0041 0.0035 -0.0041 0.0018 -0.2189 0.5073 -0.3689 -0.0769

(0.315) (0.317) (0.315) (0.241) (0.235) (0.812) (1.146)
1997-1998 -0.0061 0.0069 -0.0043 -0.0006 0.0015 -0.0327 -0.1742 0.4399 -0.2651

(0.284) (0.289) (0.294) (0.224) (0.215) (0.523) (0.738) (1.021)
1998-1999 -0.0088 -0.0116 -0.0050 0.0037 -0.0101 -0.0158 -0.0402 -0.1292 0.5397

(0.331) (0.329) (0.323) (0.247) (0.243) (0.533) (0.539) (0.648) (1.185)



Table 4: Model Parameter Estimates -- Completed Implicates
Average Standard

Parameter Name Parameter (qbar) Error [sqrt(T)] Lower Bound Upper Bound

Parameter of Main Interest *: mu 1.3131 0.1630 0.9006 1.7255

VAR(omega1) 0.1068 0.0172 0.0521 0.1614
COV(omega1,omega2) 0.0112 0.0645 -0.1942 0.2166
VAR(omega2) 0.2293 0.0932 -0.0673 0.5258

VAR(innovation) 0.0270 0.0260 -0.0558 0.1097
Coef. on 1st lag of MA2 0.7261 0.3701 -0.0320 1.4841
Coef. on 2nd lag of MA2 -0.4120 0.2189 -0.9352 0.1112

*equals (1+eta)/eta where eta is the intertemporal substition elasticity

Wage Rate Process MA2

Confidence Interval:  95%

1st Differenced Measurement 
Error and Transitory Preference 
Shocks



Table 5: Model Parameter Estimates -- Synthetic Implicates
Average Standard

Parameter Name Parameter (qbar) Error [sqrt(T)] Lower Bound Upper Bound

Parameter of Main Interest *: mu 1.0932 0.0598 0.9028 1.2835

VAR(omega1) 0.1007 0.0277 0.0125 0.1888
COV(omega1,omega2) -0.0653 0.0204 -0.1303 -0.0004
VAR(omega2) 0.1951 0.0511 0.0326 0.3577

VAR(innovation) 0.0767 0.0332 -0.0290 0.1824
Coef. on 1st lag of MA2 0.5338 0.1328 0.1111 0.9564
Coef. on 2nd lag of MA2 -0.1326 0.1097 -0.4818 0.2167

*equals (1+eta)/eta where eta is the intertemporal substition elasticity

Confidence Interval:  95%

1st Differenced Measurement 
Error and Transitory Preference 
Shocks

Wage Rate Process MA2



Table 6: Average Distance of PROBT from Mean
# rows below

diagonal PSID PSID (no SEO) NLS SIME/DIME
Covariance of 
Earnings

0 0.023 0.018 0.027 0.140
1 0.009 0.007 0.008 0.062
2 0.005 0.005 0.012 0.023
3 0.010 0.005 0.014 0.021

Covariance of 
Earnings and 
Hours

-3 0.008 0.008 0.012 0.007
-2 0.017 0.014 0.018 0.013
-1 0.063 0.057 0.102 0.066
0 0.043 0.041 0.024 0.151
1 0.015 0.011 0.007 0.083
2 0.012 0.011 0.021 0.028
3 0.008 0.010 0.026 0.025

Covariance of 
Hours

0 0.020 0.022 0.027 0.150
1 0.006 0.009 0.020 0.058
2 0.008 0.006 0.012 0.018
3 0.012 0.011 0.011 0.006

* Average Distance in Probability Measure (based on Student-T with appropriate degrees of freedom) 
from Mean of T-statistic for the Null Hypotheses that an element of the Hours/Earn Covariance matrix
based on the Completed implicates is the same as the corresponding element of the matrices
estimated in Abowd & Card (1989)

Completed data compared to:



Table 7: Comparison of Earn/Hours COV Matrices Estimated from the Completed and Synthetic Data

# rows below
diagonal Mean Standard Error Minimum Maximum

Covariance of 
Earnings 0 33.10 4.29 27.06 39.65

1 34.23 3.78 28.90 38.23
2 36.49 2.56 33.18 40.63
3 34.76 2.79 32.19 40.02
4 34.80 1.81 32.90 37.48
5 35.04 1.51 33.24 36.69
6 35.01 1.15 34.25 36.33
7 36.36 1.74 35.13 37.59
8 38.84 . 38.84 38.84

Covariance of 
Earnings and 
Hours -8 40.85 . 40.85 40.85

-7 37.51 0.38 37.24 37.78
-6 35.98 1.68 34.47 37.79
-5 35.40 2.27 32.52 38.03
-4 34.69 1.73 32.11 36.25
-3 36.11 4.39 33.12 43.87
-2 37.22 4.32 32.03 43.05
-1 36.93 3.93 30.83 42.90
0 35.26 4.19 30.82 43.79
1 38.14 3.41 34.08 45.30
2 39.58 2.29 36.23 43.11
3 40.22 2.58 36.76 43.65
4 41.76 2.17 38.28 43.77
5 43.71 3.87 40.04 48.21
6 43.25 4.18 39.50 47.76
7 43.85 4.52 40.66 47.04
8 49.31 . 49.31 49.31

Covariance of 
Hours 0 49.72 5.11 41.58 55.53

1 45.75 7.25 34.86 60.32
2 49.38 7.40 41.44 61.78
3 45.50 8.07 40.14 60.23
4 43.41 2.23 39.94 45.56
5 45.39 2.54 41.90 47.97
6 44.89 5.60 38.93 50.05
7 43.08 3.37 40.69 45.46
8 47.13 . 47.13 47.13

Percentage Overlap of Completed and Synthetic 
Confidence Intervals


