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1 Introduction

Most economists believe that agents maximize something and that they are
successful in doing so. Stigler (1976) provides a typical and outspoken exam-
ple of such a view in his critique of Leibenstein’s (1966) notion of X-efficiency.
Any inefficiency claimed by Leibenstein or others is — according to Stigler
— nothing but a failure to measure all relevant inputs, or to correctly specify
what is being maximized. For example, John Capozzi’s well-known business
maxim:

Only make a great deal if you have no intention of ever doing
business with that person again. .. otherwise make a good deal,

would not — if followed — indicate inefficiency. It might indicate that the
agent does not maximize short-term profit, but he or she would still maximize
long-term profit or, more vaguely, “utility.” Fgrsund, Lovell and Schmidt
(1980, p. 21) point out that such a view is essentially an act of faith, as it
can be neither proved nor disproved.

Perhaps, however, we can prove or disprove the hypothesis that agents
are successful maximizers. For this we would need a situation where (a) it
is unambiguous what it is that the agent wishes to maximize, and (b) clean
and complete data are available. Under these conditions any apparent sub-
optimality must be true suboptimality. Such a situation can only be found
in a very structured environment. One possibility for creating such an en-
vironment is through a laboratory experiment. This has the advantage of
maximum control, but it also has disadvantages: in laboratory experiments,
reported violations of optimality are often belittled by claiming that the in-
centives were insufficient or that the violations will be eliminated by learning
or by market competition. Although Tversky and Kahneman (1986) agree
that these factors are relevant, they question whether accounting for them
would ensure fully optimal choices. In the end, this is an empirical issue.

Our environment is a field experiment: the service strategy of tennis
players at Wimbledon. This is a real-life setting where high prizes can be
won, competition is fierce, and the players (our agents) are highly trained
and very experienced. They want to win matches on the professional tour,
especially at the “grand slam” tournaments of which Wimbledon is arguably
the most important. It seems reasonable to assume that these agents wish to
maximize the probability of winning a match. In addition, our data are clean.
The tennis environment is therefore ideal to study the efficiency of human
behavior, also because tennis has an unusual and archaic rule which does
not exist in other comparable sports (table tennis, badminton, volleyball),
namely that the server has two chances to bring the ball into play (first
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service, second service) rather than one. Even with one service the question
needs to be answered how difficult this service should be: too easy and the
server loses the point in the subsequent rally, too difficult and the service
will be a fault much of the time. Choosing the right balance is obviously
important. In the current situation the server has two services, and this has
two consequences. First, to determine the optimal strategy of choosing the
strengths of the two services is more difficult than in the one-service case.
Second, the existence of two services doubles the amount of information we
possess about a player’s strategy against a specific opponent.

Based on a simple model we can calculate the players’ optimal strategy
and we can compare this with their actual strategy. The discrepancy (ratio)
between the two defines their efficiency. We shall show that tennis players are
not entirely successful in maximizing their objective function. This is not sur-
prising, because 100% efficiency is humanly unattainable given the continuity
of the decision problem. Our main interest, however, is not a discrete test
for (in)efficiency, bur rather an estimate of the continuous measure of how
close top players are to full efficiency. Since we also have a good measure of
the quality differences among the players (position on world ranking), we can
examine how the players’ inefficiencies depend on their quality and competi-
tion within a match. This will shed some light on Tversky and Kahneman’s
(1986) question whether incentives, experience, and competition ensure fully
optimal choices.

We emphasize that our interest is not in relative efficiency (how well does
one agent perform relative to another agent, in particular relative to the most
successful agent), but rather in absolute efficiency (how well do agents per-
form compared to the optimum achievable). Thus we shall not assume that
top agents lie on the efficiency frontier. Instead we want to measure how far
they are removed from the frontier. We also note that we do not measure the
efficiency of average agents, but of top agents. We want to know whether top
tennis players are efficient and, if not, how much room for improving their
efficiency exists.! This will help us examine the relevance of high experience
and ability for efficiency.

Sports statistics (and sports economics) has developed from an anecdo-
tal field where one collects statistics (so many double faults, so many aces),
to an almost-respectable discipline. An important reason for this develop-

'Several methods have been proposed to allow for inefficiencies of firms, in particular
stochastic frontier analysis; see the surveys by Fgrsund, Lovell and Schmidt (1980) and
Schmidt (1985/86), the monograph by Kumbhakar and Lovell (2000), and a Bayesian
perspective by Koop, Osiewalsky and Steel (1997). The main emphasis of these studies is
the measurement of efficiency (productivity) of an average firm.



ment is that sport statistics can help answer behavioral questions. Moreover,
sports data are readily available and they are measured much more precisely
than most economic data. This has led to studies on racial discrimination
(Gwartney and Haworth, 1974; Kahn and Sherer, 1988; Nardinelli and Si-
mon, 1990; Stone and Warren, 1999; Szymanski, 2000; Kanazawa and Funk,
2001; and Goff, McCormick and Tollison, 2002), efficiency of the betting
market (Zuber, Gandar and Bowers, 1985; Sauer, Brajer, Ferris and Marr,
1988; Golec and Tamarkin, 1991; Dixon and Coles, 1997; and Gray and Gray,
1997), comparison of betting markets and financial markets (Levitt, 2004),
the effect of labor strikes on consumer demand (Schmidt and Berri, 2004),
preferences under risk (Julien and Salanié, 2000), mixed strategy equilibria
(Walker and Wooders, 2001; and Chiappori, Levitt and Groseclose, 2002),
incentive effects (Ehrenberg and Bognanno, 1990), rationality (Gandar, Zu-
ber, O’'Brian and Russo, 1988), optimal labor contracts (Lazear and Rosen,
1981), control of externalities (Carlton, Frankel and Landes, 2004), favoritism
(Garicano, Palacios-Huerta and Prendergast, 2005), maximizing behavior of
firms (Romer, 2006; and Adams, 2006), and so on.

The studies most closely related to our paper are Walker and Wooders
(2001), Chiappori, Levitt and Groseclose (2002), Romer (2006), and Adams
(2006). Walker and Wooders examine whether tennis players aim their first
service to the receiver’s left or right (only two options), in such a way that the
probability of winning a point is equal for the two directions, as the theory of
mixed-strategy equilibrium implies. Their results provide some evidence that
the behavior of top players conforms closely to this theory, which contrasts
to the conclusions in many experiments. Our set-up and analysis differs from
theirs in three important respects. First, since the probability of winning a
point depends not only on the direction of the first service (especially when
the first service is a fault), but also on spin, speed, and many other factors, we
concentrate on a broader concept, namely the probability of serving in, and
we consider both the first and second service. Our analysis should therefore
have higher power. Second, since our analysis is continuous rather than
discrete, we not only test for efficiency, but also (and in particular) estimate
the magnitude of the inefficiency. Third, both Walker and Wooders and we
are interested in the relevance of a player’s quality for optimal play. Using a
different data set, involving inexperienced card players, Walker and Wooders
reject the theory, and they take this as evidence that play by high-quality
players conforms more closely to the theory than play by novices. This
observed difference may, however, be driven by the different set-up (cards
game versus tennis). In our analysis, we can test the relevance of a player’s
quality for optimality within a single data set.



Chiappori, Levitt and Groseclose (2002) also test mixed-strategy play,
but now for penalty kicks in soccer rather than for tennis. Their results are
also consistent with optimality, thus confirming the conclusions of Walker
and Wooders (2001).

Romer (2006) studies profit maximization of firms by focusing on coaches
and their teams in professional (American) football. More specifically, he
tests for optimality of the coach’s decision on “fourth down” between kicking
and “going for it.” In contrast to Walker and Wooders (2001) and Chi-
appori, Levitt and Groseclose (2002), he overwhelmingly rejects optimality.
Even though Romer studies teams and allows for interactions between agents,
whereas we study individual behavior, our tennis data may help answer some
of his questions. Romer gives two possible explanations for his rejection and
the overconservative behavior of coaches. First, the coach’s objective func-
tion may be more complicated than Romer assumes; second, coaches are
not able to correctly maximize. Unfortunately, says Romer, there is little
evidence which of the two explanations causes the suboptimal behavior. In
tennis, however, there are two services, and the maximization for the second
service is easier than for first service. We shall see that this fact can be
exploited to shed some light on the true cause of suboptimal behavior.

Adams (2006) questions Romer’s results, in particular the assumption
that success rates on third down equal those on fourth down, and concludes
that coaches may in fact take optimal decisions.

The literature thus reports mixed evidence on optimality. Our contribu-
tion is to provide some new and cleaner insights to help resolve this ambiguity,
and also to estimate the level of efficiency, rather than testing for perfect ef-
ficiency, which is the focus in the existing literature.

The organization of this paper is as follows. In Section 2 we present the
theoretical model, based on the relationship between the probability that
a service is in (z) and the conditional probability that the server wins the
point if the service is in (y(z)). We prove the existence and uniqueness of
an optimal strategy and introduce the concept of efficiency of the service.
In Section 3 we propose a functional form for y(z). Since tennis allows two
services, we have information on the (current, not necessarily optimal) strat-
egy (z1,r9) and the corresponding “yield” (yi,y2). We do not, however,
observe these probabilities directly, only the associated relative frequencies.
In Section 4 we estimate the key probabilities using a generalized method of
moments (GMM) approach. Next, in Section 5 we discuss the identification
and estimation of the curvature of the y-curve. Then, in Section 6, we esti-
mate and discuss the (in)efficiencies of top tennis players. In our conclusion
we try to relate these results to the inefficiency of economic agents.



2 Theoretical model

Consider a tennis match between two players ¢ and 7. Both ¢ and j are maxi-
mizing the probability of winning the match. If points are independent, then
each server chooses that service strategy which will maximize the probability
of winning a point. We will develop a model that answers the question how
difficult a player should make his or her service in order to maximize the
probability of winning a point on service.

2.1 Existence and uniqueness of an optimal strategy

Given the strengths of both players, let x; denote the probability that the
first service is in, and let x5 denote the probability that the second service
is in. Also, let y(z) denote the conditional probability that player ¢ wins the
point if the service has probability = of being in. So, y; := y(z1) denotes the
conditional probability that player ¢« wins the point on his or her first service
if the first service is in, and similarly for the second service ys := y(z5). We
realize that both z and y will be influenced by other factors (speed, direc-
tion, spin, concentration, (mental) effort to determine the optimal strategy,
emotions). For the moment we abstract from these unobservable factors, but
we shall discuss them in Section 2.3. Implicit in our set-up is the assumption
that a first service of probability x yields the same y as a second service of
probability z. We therefore ignore the possibility that a receiver may be more
aggressive on a second service of strength = than on a (relatively weak) first
service of the same strength x. In reality, however, there is typically a gap in
strength between the first and second service, which mitigates the influence
of the single y-curve assumption. Moreover, in Sections 5.3 and 6 we examine
the importance of this assumption by allowing for separate y-curves for the
first and second services, and show that our results are robust.

Given z and y(z) we define w(z) := z - y(x), which transforms the con-
ditional probability y into an unconditional probability w. The probability
that player ¢ wins the point is then given by

p(x1, ) = w(zy) + (1 — 1) w(xs). (1)

If the functional form of y(z) is known, we can calculate the optimal service
strategy (z7,x3) by maximizing p(x;,z2). Under suitable regularity condi-
tions and in the absence of a boundary solution, the optimal strategy satisfies
the first-order conditions

w'(z]) = w(ws),  w'(w) = 0. (2)



In what follows we shall, however, allow for the possibility of a boundary
solution x5 = 1.

It seems reasonable to assume that the easier a player makes his or her
service, the more likely it is that the service is in (x increases), but the less
likely it is that the point is won if the service is in (y decreases). Hence, we
impose the condition that y is a (locally) decreasing function of x.

Condition R1 (monotonicity): The real-valued function y is continu-
ous and monotonically decreasing on [0, 1], and satisfies 0 < y(z) < 1 for all

z € [0,1].

In order to achieve existence and uniqueness of the optimal strategy we need
more than monotonicity. We shall also impose (local) concavity.

Condition R2 (concavity): The real-valued function y is twice differ-
entiable on (0, 1) with ¢'(1) := lim,; y'(2) < 0, and w(x) satisfies w”(x) < 0
for all z € (0,1).

Condition R2 implies that w is strictly concave on the interval (0,1) and
reaches a unique maximum for some x € (0, 1]. This reflects the fact that
if a player’s service is too easy he/she is unlikely to win the point, but if
the service is too difficult he/she is also unlikely to win the point — in fact,
w(0) = 0. There should be an optimal service, neither too difficult nor too
easy, which maximizes the player’s probability of winning the point on that
service. Given these regularity conditions we can now prove Theorem 1.

Theorem 1 (existence and uniqueness): Assume that regularity con-
ditions R1 and R2 hold. Then there exists a unique optimal service strategy
(x7, z5) which maximizes p(z1, xs).

Proof. Both steps of the proof use the fact that w’ is monotonically decreas-
ing. For the first step (regarding z3) we note that w'(0) := lim, o w'(x) =
y(0) > 0. If w'(1) := lim,yy w'(z) < 0, then there exists a unique =3 € (0, 1)
such that w'(z%) = 0. If w'(1) > 0, then w(z) is monotonically increasing for
all  and hence reaches its maximum at x5 = 1.

For the second step (regarding x}) we show first that w(z}) > w'(z3). If
w'(1) < 0, then w'(z}) = 0 and w(x3) > 0, and hence w(z}) > w'(x}). If
w'(1) > 0, then 25 =1 and

w(xly) =w(l)=y(1) >y(1)+y'(1) =w'(1) = w'(x}),



because y'(1) < 0. In addition,

w(zs) = w3y(x3) < y(ws) <y(0) = w'(0).

Thus we find that
w'(x5) < w(ry) < w'(0),

and hence there exists a unique zj with 0 < a2} < z3 such that w'(z}) =

w(ws). ||

We remark that both conditions can be much weakened. Regarding con-
dition R1 (global monotonicity) it is sufficient that the y-curve is negatively
sloped around x} and zj. Similarly, condition R2 (global concavity) need
only hold locally for all = € (xg, 1), where 0 < zy < 7}, and this is in fact
what we shall use in our estimation. (The choice zq = 0.4 appears to be
satisfactory.) In fact, it is possible to choose the y-curve such that it gives
us maximum flexibility over the slopes at ] and x5, because all we need is
that there exists a pair (z7,z5) with 0 < 2] < 2§ < 1, such that w(z) has a
unique maximum at z3 and w(z) + (1 — z)w(z}) has a unique maximum at
x7. The y-curve may thus have kinks. We shall use this generalization later
when we discuss the robustness of the specification.

2.2 Implications

Theorem 1 has certain implications for the optimal service strategy (x}, z3);
see also Gale (1971).

Theorem 2 (implications): If conditions R1 and R2 are satisfied, then
the following relations must hold for the optimal strategy (x7, z3):

(a) z7 <3,

(b) y(z7) > y(a3),

(c) w(z}) < w(x}), and

(d) w(z3) —w(a}) < (23 — 27)w(zs).

Proof. Statement (a) is implied in the proof of Theorem 1. Statement (b)
then follows since y is a decreasing function. Statement (c) follows from the
fact that if (z7,x3) is the optimal service strategy, then this strategy should
lead to a higher probability of winning the point than the strategy (z7,x7)
(always using the first service), that is,

w(zy) + (1 —apw(wz) > w(ay) + (1 - zp)w(ry),



and this simplifies to (c). Similarly, the optimal strategy (x7}, z3) should lead
to a higher probability of winning the point than the strategy (z3, %) (always
using the second service). This implies

w(zy) + (1 = z)w(rz) > w(a) + (1 - 23)w(zs)

which simplifies to (d). ||

Relations (a) and (b) say that the first service should be more difficult than
the second in two senses: (a) it is less often in, and (b) if it is in it is more
likely to win the point. Relation (c) is less obvious. It says that the proba-
bility of winning a point at the first (difficult) service should be smaller than
the probability of winning a point on the second (easier) service.

As a preliminary exercise, we calculate the observed frequencies for each
player in each match using the data described in Section 4.1. If a player serves
optimally, he or she should satisfy the four implications stated in Theorem 2.
In fact, these implications are often not satisfied. The condition z; < x5

Table 1—Four Consistency Conditions
(a) (b) (c) (d) Total

Men  1.00 0.91 0.78 0.80 0.59
Women 0.98 0.72 0.77 0.64 0.42

appears to be almost always satisfied, which means that almost all players
take more risk on their first service than on their second service (as they
should). However, this additional risk does not necessarily translate into
higher productivity: the condition y(x1) > y(z3) is only satisfied for 91% of
the men and 72% of the women. Condition (c¢) requires that (z1,z9) is a
better service strategy than (xq, 1), but this is only true for 77-78% of the
players. Condition (d) requires that (z1,z3) is a better service strategy than
(29, x2), but this is only true for 80% of the men and 64% of the women.
For only 59% of the men and 42% of the women are all four consistency
requirements satisfied.

It therefore seems that for many players the probability of winning a
point can be increased by making small changes to their service strategy.
Indeed, since the four consistency conditions are necessary but not sufficient
for an optimal strategy (and hence even if all four conditions are satisfied
a player may not follow the optimal strategy), the actual deviations from
the optimum will be even larger. This conclusion, however, is too hasty
and simplistic. For one, there will be measurement error: we are interested
in probabilities but we observe relative frequencies, and this might lead to



smaller deviations from the optimum. A more careful statistical analysis is
required.

2.3 Other influences

It would be naive to believe that the y-curve only depends on x. In fact, both
x and y will depend on a p x 1 vector w representing speed, direction, spin,
concentration, (mental) effort to determine the optimal strategy, emotions,

et cetera. We define an auxiliary vector v = (vy,...,v,_1)" such that (z,v)
and w are in one-to-one correspondence, and we write y = y(z,v). Suppose
we have only one service. Then we should maximize w(z,v) := z - y(z,v)
with respect to z and v. The first-order conditions are
Oy(,v) Oy(w,v)
z,v) + 1 —-=> > =0, z,v)=—">=0 (h=1,...,p—1).
a0) + o 20 puto) = 2D g 1)

For given z, assume that the equations yp(x,v) = 0 have a unique solution
v = ((x), so that each yp(x,((z)) = 0 for all z. At the optimum (z*,v*) we
have ¢y (2*,v*) = 0, and hence

Oy(x.C@)|  _ dyl. () S (g (@)
O r=x* - Ox r=x* i ;wh(z ' ) Ox r=x*
_ Oy(x,((2"))
a ax T=x*

The same reasoning applies when there are two services. We conclude that
we may think of the y-curve as y(z, ((x)), where v = ((z) is chosen optimally
for given z. Obviously some assumption is required on v, since no data are
available on either v or w. The particular assumption of choosing v optimally
implies a “conservative” estimate of the efficiency. The same applies to the
identification and estimation of A (the curvature parameter of the y-curve),
as we shall see in Section 5: no data and a conservative approach. We shall
come back to the effects of the conservative approach when we discuss our
efficiency results in Section 6.

In fact, it is not necessary that all p — 1 components of v are chosen
optimally. We may partition v = (vy,v2), where v; is adjusted optimally
(spin, direction) and vy does not vary with respect to = (concentration).

2.4 Efficiency

In a given match between two players the probability that the server wins a
point is given by (1):
p=z1y1 + (1 — 71) 729, (3)
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Whether or not (z1,y;) and (z2,y2) are the optimal probabilities, the y-
curve will pass through these two points. If the y-curve were linear then the
two points would determine the curve, but we shall see that linearity is too
restrictive. Suppose therefore that the y-curve depends on one (or more)
curvature parameter A\. Given the y-curve, we obtain the optimal strategy
(x7, %) and the corresponding function values y; = y(x}) and y3 = y(x3), all
of which depend on A. The maximum probability of winning a point is thus

Pt = aiyy + (1 —a7)z3us, (4)
and we define the efficiency of the server in this match as

eff :==p/p”, (5)

which is a number between zero and one. The closer eff is to one, the higher
is the efficiency. Note that the efficiency differs per player.

Of course, we do not know the probabilities (xy,y;) and (z2,y2) and the
curvature parameter \. Their estimation is taken up in Sections 4 and 5.
But first we need to discuss the specification of the y-curve.

3 Functional form for y(x)

The simplest specification for y is a linear function. This, however, does
not work well in practice. For example, it forces 27 < 1/2, which is not
realistic since the observed frequencies for x; are 59.5% for men and 61.6%
for women. Some curvature is required. We propose the following simple

nonlinear function:
a—
y(z) = , A>0. (6)

T

Despite its simple form, this specification is already quite flexible over the
relevant range [0.4, 1.0], but it may still be too restrictive. We shall see in
Sections 5.3 and 6 that a more flexible generalization of (6) does not change
the results. In fact, the generalization even strengthens our main result.
Hence, (6) suffices.

The two regularity conditions R1 and R2 are satisfied if and only if

1<a<rt+x, (7)

where 0 < zy < zj. The proposed y-curve allows y to be either concave
or convex (or linear) on the (0, 1) interval, depending on whether A > 1 or
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0 <A<1(orA=1). Given (6) we obtain w(z) = z(a—2*)/7. If a < A+1,
then w'(1) < 0 and z3 is obtained from the first-order condition

a— A+ Dap?
T

:07

w'(3) =
so that 23" = a/(A+1). If @ > A+ 1, then w'(1) > 0 and 2% = 1. Hence,

23" = min <)\L+1, 1) . (8)

Given z3, we find 27 from the equation w'(x}) = w(x}), that is
a— A+ Do = zi(a — 23

from which we solve

* * )\ *
o = ot (1 B 1932) : (9)

From (x7, z3) we immediately obtain yi = y(z7) and y5 = y(z3).
The geometry of the solution is illustrated in Figure 1, where we have

1.0
0.9r1
0.8
0.71
0.6f w'(z)\_ !

0.5f == =
0.4r
0.31
0of W)
0.1r1

0'%.0 0.1 02 03 04 05 0.6 0.7 0.8 09 1.0
Figure 1. Optimal service strategy.
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chosen @« = 2.4, 7 = 3.0, and A\ = 3.0. On the horizontal axis we find
the probability x that the service is in; on the vertical axis we find the
conditional probability y(z) that server wins the point if the service is in,
the unconditional probability w(z) = x - y(x) that server wins the point on
this service, and the derivative w'(z). The optimal service strategy is found
from Equations (8) and (9) which yields z7 = 60.4% and 25 = 84.3%. If the
optimal strategy is employed, the probability of winning a point on service
is p* = 63.9%, the probability of a double fault is 6.2%, and the probability
of winning a service game is 81.1%.

Suppose we have observed xy, x3, y;, and y, for the server in a given
match. This gives us two points (z1,y;) and (z9,y2) on the curve. For each
A we can solve 7 and « from the two equations

A A
o —x a—x
L= Y1, 2 = Ya. (10)
The solution reads
A by A by
TH — X T — Yo
P S W L B L (11)
Y1 — Y2 Y1 — Y2

Inserting (11) into (6) then gives

A A
Y1y — Yoy Y1 — Yo A
T) = — N 12

Hence, in order to compute the y-curve and the optimal service strategy, we
need to estimate A and the probabilities (x1,y;) and (z2,y9); that is, the
probabilities actually employed by the player. The method of estimating
(z1,71) and (xq,ys2) is outlined in Section 4. The parameter \ is essentially
unidentified from the data, and we shall discuss this problem (and a way
round it) in Section 5.

4 Estimation of the key probabilities

In Section 2 we highlighted the importance of the two probabilities = (prob-
ability that service is in) and y (conditional probability that server wins the
point if service is in). For player i against player j the key probabilities are
given by
Zij = (961,z'j, T2,i5, Y1,ig; y2,z‘j)/ )

where x; ;; denotes the probability that ¢ (playing against j) serves his or her
first service in, and similarly for the other three probabilities. We cannot ob-
serve these four key probabilities, but we can observe the associated relative
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frequencies, denoted by f;;, and the associated number of observations under-
lying each of the relative frequencies, denoted by ¢;;. If the ¢;;-dimension were
sufficiently large, then the probabilities in z;; would be well approximated
by the relative frequencies in f;;, and there would be no need to model z;;
further. In that case we could jump directly to Section 5 and treat (z;;, 2j;)
as given. However, the t;;-dimension is not large, especially for the second
service where (in our data set) it gets as low as 14 (men) and 5 (women).
Hence important efficiency gains can be achieved by modeling z;;.

4.1 The data

Our data consist of singles matches played at Wimbledon during 1992-1995:
508 matches for the men and 508 matches for the women. For each of these
matches we know the two players, their rankings at the beginning of the
tournament, and the match result. For almost half of the matches (258
matches in the men’s singles and 223 matches in the women’s singles) we
know the complete sequence of points. The data are described in detail in
Magnus and Klaassen (1999a).

The reason that we do not have detailed data on all matches played
during the four years is that only matches played on one of the five “show
courts” (Centre Court and Courts 1, 2, 13, and 14) have been recorded.
Typically, matches involving the most important players are scheduled on
the show courts, and this causes an under-representation in the data set
of matches involving weaker players. All results in this section have been
corrected for this selection problem by weighting the matches by the inverses
of the sampling percentages. The weighting procedure is discussed in detail
in Magnus and Klaassen (1999b).

In this paper we only use sixteen summary statistics per match, thus not
the complete sequence of points; in fact we only use the data in the current
section and in Table 1. For player ¢ serving against player j we use the relative
frequencies f;; and the associated numbers of observations ¢;;; and the same
for player j serving against 7. For example, suppose player i serves 100 times
against player j. Of the 100 first services, 60 are in and 40 are a fault; if the
first service is in, player ¢ wins the point in 44 cases and loses it in 16 cases.
Of the 40 second services, 35 are in and 5 are a fault (double fault); if the
second service is in, player ¢ wins the point in 21 cases and loses it in 14 cases.
This information allows us to compute f;; = (0.600,0.875,0.733,0.600)" and
ti; = (100,40, 60, 35)".

We do not have access to more matches of which all relevant summary
statistics are known. If we had, this would have decreased the estimation
uncertainty from the GMM procedure described below. We could have in-

14



creased the number of matches where we only require the rankings (currently
508 matches) by including Wimbledon singles matches from 1996 onwards.
This would, however, have added nothing and it would also have raised the
question of parameter instability over time.

4.2 The measurement equation

In what follows we assume that matches are independent (even when servers
occur in several matches), and that points played in one match are inde-
pendent and identically distributed (i.i.d.). The independence of matches
seems a reasonable assumption, but the i.i.d. assumption of points within
one match is a hot issue (not only in tennis), and was analyzed by Klaassen
and Magnus (2001). They conclude that points in tennis are neither inde-
pendent nor identically distributed, but that the deviation is small (though
statistically significant) and that therefore the i.i.d. assumption will still be
reasonable in many specific directions. In addition, in our case, we do not
use the points themselves but summary statistics (averages) so that any pos-
sible harm caused by the wrong assumption is much reduced. Finally, any
remaining error caused by the i.i.d. approximation will result in an overes-
timation of the inefficiency, which would strengthen rather than weaken our
main conclusion that the inefficiency is small.

In measuring the (nonobservable) random probability z; with the (ob-
servable) random relative frequency f;;, a measurement error occurs:

fis = zij + nij. (13)

Since each tg-f) fz-(f) (k=1,...,4) follows a binomial distribution conditional
on z;j, we obtain

E(mij | zi) =0, var(ni; | zij) = Ay, (14)

where the diagonal elements of A;; are given by

1

AL = t@zgf)u —2) (k=1,...,4). (15)
ij

We assume that the off-diagonal elements of A;; are zero, which is reasonable,

because the components of 7;; represent “pure noise.” In addition and for

the same reason, we assume that E(7n;; | z;) = 0 and that 7;; and 7;; are

uncorrelated (conditional on z;; and z;;).
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4.3 A model for z;;

Since the four probabilities in z;; will be correlated and, in addition, z;; and
zj; will be correlated, we need to model an eight-dimensional distribution.
The probabilities depend on the characteristics of the server and his or her
opponent. Some of these characteristics are observable, some are not. An
important characteristic is a player’s “quality.” In tennis a player’s quality
is partly measured by his or her official ranking. Although this is not a per-
fect measure of quality (for example, it does not account for “form of the
day”), the ranking contains important information about the key probabili-
ties, which we want to exploit.

Let RANK; denote the ranking of player ¢ at the moment of the tourna-
ment. Direct use of the ranking is not satisfactory, because quality in tennis
is a pyramid: the difference between the top two players (ranked 1 and 2)
is generally larger than between two players ranked 101 and 102. As moti-
vated in Klaassen and Magnus (2001), RANK; is transformed into a smooth
version of the “expected round” by defining

For example, if RANK; = 4 then r; = 6.00, and if RANK; = 3 then r; = 6.42,
indicating that both are expected to lose in round 6 (the semifinal in grand
slam tournaments like Wimbledon). The additional 0.42 indicates that the
number 3 ranked player is somewhat better than the player ranked 4.

Apart from the ranking there are also quality components that we do
not observe, such as form of the day, special ability on the court surface
on which the match is played (grass for Wimbledon), and fear against a
specific opponent. In addition, each player has his or her own style of play,
a characteristic that may also affect the four key probabilities. None of
these features is observed, but we correct for them by including two four-
dimensional vectors €;; and ¢j; of unobservable effects.

We model the key probabilities in a given match between ¢ and j as an

/

eight-dimensional vector (zj;,2};)’, where

Zij = /L‘i‘riﬁs +7‘jﬁR+5z‘j‘ (16)

The linearity assumption underlying this equation is acceptable when we use
r; as a regressor, but not when we use RANK;, as preliminary nonparametric
regressions show. The vectors Bs and (i contain the effects of the server’s
and receiver’s rankings on each probability in z;;, respectively. For the errors

OO E) v
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It is convenient to center r; and r;. The zero mean standardization of the
errors then implies that p is equal to the mean of z;;.

The assumption regarding the errors implies that ¢;; is a random (instead
of fixed) effect. Because the rankings RANK, and RANK; are determined
before the tournament starts, we assume that there is no correlation between
e;; and the rankings. To account for the correlations between the key proba-
bilities for a given server we include a variance matrix »;. In addition, there
may be correlations between the key probabilities across the two servers in a
given match. For example, if player ¢ is better on the present court surface
(grass, say) than his or her ranking indicates, or if player ¢ usually performs
well against j, then especially the two last components of €;; and €;;, which
concern the winning probabilities, are negatively correlated. Thus we in-

troduce a covariance matrix Y,. Since the moments do not depend on the
(B) (1) (3) (4))

specific players (i and j), we have, for example, cov(e;;’, €;;') = cov(ej;’, &
so that Yy is symmetric.
In summary, we have a model for the whole vector (z;;, 27;)" of probabilities

that govern the two service series within a match. These probabilities are
restricted to be constant within a match. However, in all other respects, the
probabilities are unrestricted, as we allow for full heterogeneity across players
(servers and receivers) and for possible correlations within a match. There
are four free parameters in each of i, fg, and (g, and ten free parameters in
each of ¥ and X5, in total 32 parameters.

4.4 Moment conditions

We employ the generalized method of moments (GMM) to estimate the 32
parameters. Hence we need to derive moment conditions, taking into account
that the lengths of the service series across players vary, as do the lengths of
the four service series for each player (in ¢;;). We define

B=(p:fs:Pr), ri;= 11715,
and write (16) in matrix form as
2ij = Brij + €. (18)
Combining (18) with (13) then gives
Jij = Brij +&ij + nij,

where the fact that E(n;; | z;;) = E(n;; | z;;) = 0 implies that ;; is uncorre-
lated with 7;; and 7;;. From the conditional moments (14) we find E(7;;) = 0
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and var(n;;) = E(A;;). Since z; (and hence A;;) cannot be observed, we
define the diagonal matrix A;; whose k-th diagonal element is given by

1

ij
and we note that E(KU | ;) = A;; so that E(KU) = E(A;). (If tg?)
equals one or zero, then (19) breaks down. This does not occur in our data
set, because the minimum number of second services in is 14 (men) and 5
(women), and the minimum number of first services in is 31 (men) and 14
(women).) The following expectations are then implied:

E((fij — Bri)ri;) =0
Val'(fz'j — BT,;j) = 21 -+ E(AU)
COV(fij — Brija fji — Brji) = 22. (20)

A _
AW

The first moment is the usual least-squares orthogonality condition (12 re-
strictions), the second moment concerns the within-server variance (10 re-
strictions, because of the symmetry), and the third moment captures the
correlation between the frequency vectors of the two servers in a match (10
restrictions).

4.5 Implementation

Let n; denote the number of server series (twice the number of matches),
the cross-section dimension of the panel. In our sample we have n; = 516
in the men’s singles and n; = 446 in the women’s singles. Because n; is
substantially larger than the elements of t;; (especially the elements that
concern the second service), our asymptotic justification is based on large n;
and finite ¢;;. The moment conditions have thus been set up in a format that
is standard in studies that rely on large-n; asymptotics.

The set of moment conditions (20) contains 32 different elements. Each
server ¢ in his or her match against j has exactly one observation of each ele-
ment. Let m;; denote the 32-dimensional vector containing all observations:

vec ((fz] — BTz‘j)ng) N
mij = | vech <(fij — Bryj)(fij — Bryj)' — X1 — Az‘j) ’
vech ((fij — Bri;)(fji — Brji)' — )

where vech() denotes the half-vec operator stacking the nonrepeated elements
of a symmetric matrix. Obviously, E(m;;) = 0 and one could use the sam-
ple average (1/ny) > m;; in a GMM procedure to estimate the parameters.
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There are however two sources of inefficiency that we wish to take account of.
First, all players serve a different number of points, so that the precision of
the frequencies varies. Taking an unweighted average across players does not
take this into account. Second, for a given server the number of points varies
across the key frequencies. To increase the efficiency of our estimates, we
weight each element of m;; by the number of observations used to compute
that element. Hence, we obtain a new moment vector

mi; = Qigmij,

where (2;; is a diagonal 32 x 32 matrix with the 32 weights on the diagonal.
This leads to the following GMM objective function:

Ie— -\ 1 — -~
min (n—l me) w (n—l me) )

where we minimize over all 32 parameters. We use the standard optimal
weighting matrix W, that is, the inverse of the variance of the limiting dis-
tribution of m,;. We begin with W = I3, to obtain a consistent estimate of

the parameter vector, then we estimate W by /V[7, and finally we minimize
the objective function again using W instead of the identity matrix. This
two-step procedure gives us consistent, asymptotically normal, and efficient
estimates.

4.6 Estimation results

The estimates of u, Bs, Br, X1, and Y5, together with their standard errors
are reported in Table 2.

TABLE 2

The p parameters give the results for the average player and are estimated
very precisely. On average 59.5% of the first services are in for the men
(61.6% for the women) and 86.4% of the second services (same for men and
women). The similarity between men and women is remarkable. The scoring
power of the service is of course rather different for men and women. If the
first service is in then men score 74.0% (63.1% for women) on average, and
if the second service is in they score 59.4% (52.6% for women).

The [s-estimates show that the better a player is, the higher are the
key probabilities. As expected, this is clearly true for y; and y, and (less
strongly) also for x; and z5. The estimates of Gz show just the opposite.
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The estimates in the variance matrix >, are presented as standard devia-
tions (for the four diagonal elements) and correlations (for the six off-diagonal
elements). Of the ten estimated parameters in the covariance matrix Y,
seven are statistically and logically insignificant, and are set equal to zero.
Yet we use 32 (rather than 25) moments at the estimation stage. This allows
an overidentifying restrictions test (ORT), giving ORT = 11.77 (0.11) for
the men and ORT = 2.33 (0.94) for the women (p-values in brackets), thus
providing further support for restricting the seven parameters to zero. The
three remaining estimates in Y, are correlations, also the estimate indicated
by (y1,v1) (and similarly (ys,y2)) as it measures the correlation between vy ;;
and vy, ;;. The three correlations are negative because if player ¢ is “in form”
(relative to j) as a server he or she is also likely to be “in form” as a receiver.

The correlations in the (not reported) 25 x 25 variance matrix of the
estimates are all small, so that the variables satisfy a high degree of orthog-
onality and there is no problem of multicollinearity. The estimates are all
very plausible and the fact that all signs are the same for men and women
underlines their significance.

5 Identification of )\

Now that we have estimated the distribution of (z;;, z;;), we know the dis-
tribution of (z1,y;) and (x9,ys) for server ¢ in his/her match against j, but
we do not yet know A, a necessary ingredient for the estimation of the y-
curve (12). The curvature parameter X is essentially unidentified, because
the y-curve depends on three parameters and we only observe two points on
each curve: (x1,7;1) and (x9,y2). In principle we could increase the number
of points on the curve by looking at sets instead of matches, but this does
not help because the set results are too clustered.

Thus we treat \;; as a random effect, in the same way as we have treated
g;; in the estimation of z;;, and assume

Xij | (21, 26) ~ (X, 03). (21)

We shall obtain “conservative” estimates of A and o), in line with our dis-
cussion in Section 2.3, in the sense that we shall solve

1
max — Z E(eff,;j),

)\,0')\ n

where eff = p/p* is the efficiency defined in (5), and n denotes the number of
players. We shall discuss the seriousness of this conservativeness in Section 6.
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We maximize the average of the expected efficiency (over the n players),
because the elements over which we maximize are all positive, so that the
average is equal to the mean absolute error and therefore takes account of
the spread as well as the location. This measure is therefore preferable over
the median (only location).

The (nontrivial) estimation procedure is described below. We shall see
that the estimate of o) is essentially zero, so that we may take \;; = A
(constant). Apparently we may assume that for each player the y-curve has
the same curvature (but different height and slope).

We treat men and women separately. For both men’s singles and women’s
singles we consider 508 matches, that is, all singles matches played at Wim-
bledon during 1992-1995. This gives n = 1016 servers. For each match
we require the rankings r; and r;, but not the summary statistics used in
Section 4.

5.1 Monte Carlo

In Section 4 we estimated the 25 parameters in u, 8s, Or, 21, and X9, and
also the 25 x 25 variance matrix. We collect the 25 parameters in a vector
0, denote its estimator by 6, the asymptotic variance matrix of 6 by V', and
its estimator by V. Then, approximately, § ~ N(6, V).

The Monte Carlo procedure consists of two stages. In the first stage we
draw, for r = 1,..., R (R = 50), a vector #) from the N(6, V') distribution
under the restriction that the matrix

EY) Eg”)
Zg") Eg'r)
is positive definite. Hence we draw from a truncated normal distribution.
The first stage of the Monte Carlo draw is independent of A;;.
In the second stage we simulate E(eff;;) by drawing (z;;, zji, Aij, Aji), for

each of the 508 matches and for each of the R draws of §. By (16) and (17)
we have in each match

<) (0B s (B
Zji ) 4+ rjﬁg) + rlﬂg) ’ Zg) ZY)
Since the densities of the four frequencies in f;; have the appearance of nor-
mal curves, it seems reasonable to assume normality of the distribution of

(2ij, zji), but truncated for two reasons. First, we must have zy < z; <1 and
rog < 29 < 1. In particular, the condition x5 < 1 must be imposed. Second,
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conditions R1 and R2 must hold, which is the case if and only if condition
(7) holds. Using (11), the truncation thus depends on \;; because

)\i]’ >\ij >\ij )\i]'

Y1,ijT255 = Y2,ijL145 _ Log5 — Tiij Nij

1 < ;0] ) S ) ;0] + xou’
Y145 — Y2,i5 Yiij — Y215

where we set xy = 0.4. We also assume normality of (\;;, Aj;), but trun-
cated because of the restriction A > 0. We now draw S = 50 ten-dimensional
vectors of independent realizations (u;;, uj;) from the uniform distribution de-
fined on the [0, 1] interval. We transform them into S draws (z;;, 2ji, Aij, Aji)
using the GHK procedure; see Hajivassiliou, McFadden and Ruud (1996)
The resulting draws will satisfy regularity conditions R1 and R2, have pos-
itive A, and all probabilities will be in the [0, 1] interval. We then compute
eff;; for each draw, and approximate E(eff;;) by taking the average over the

S draws.

5.2 Estimation of )\

The result of the two-stage procedure is that we can calculate, for each of
the R draws 6) and for each server, the expectation E(eff;;) as a function
of A and o), and hence also the average expected efficiency

)\ o) ZE eff;;).

To estimate A and oy, we calculate the function eff(), o) for different values
of A and oy, where in each function calculation the draw of (z;;, zji, Aij, Aji)
is based on the same draw of (u;;, uj;). Because of the concavity of the un-
derlying functions, the function eff (A, o) will have a maximum in a suitably
chosen parameter range.

The R maximizing parameter values have a mean (standard error) of
X = 3.07 (0.13) and Gy = 0.002 (0.003) for the men, and A = 3.77 (0.35)
and o, = 0.005 (0.008) for the women. Since ) is not significantly different
from zero, we set o) = 0 and re-estimate A. The R draws for A have a mean
(standard error) of A = 3.07 (0.13) in the men’s singles and A = 3.83 (0.37)
in the women’s singles. (If we maximize the median instead of the mean of
the expected efficiency, we obtain A = 3.06 (0.13) for the men and A = 3.71
(0.35) for the women.) The estimate of A is significantly different for men
and women, and is rather precise.

At the end of this admittedly complicated estimation procedure we thus
have, for each of the R draws of 6, S feasible 8 x 1 vectors (z;, z;;) for all
508 matches and one A. In short, we have S = 50 feasible 9 x 1 vectors

(Zija ij', )\)
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5.3 Sensitivity

A crucial element in this paper is the specification of the y-curve and the
estimation of its curvature. It is therefore important to find out how sensitive
our results are to (small) deviations from the chosen specification. In Table 3

Table 3—Estimates of A

y-curve Curvature Men Women
Co A 3.0677  3.7727
(0.1315) (0.3455)

Ch A 3.0553 3.4338
(0.1246) (0.2751)

Co A1 3.1373 3.5720
(0.1879) (0.2816)

Ao 2.8955 2.9366

(0.2538)  (0.6754)

we compare the A-estimates from three different specifications of the y-curve.
The curve Cj is our preferred specification (6), while the curves C; and Cy are
based on the idea that the most important aspect of the y-curve is the area
around x; and x5. Suppose we allow two y-curves: one around x; and one
around 5. The two curves are both power curves like (6), but with different
sets of parameters («, 7, A). Both curves are only specified locally, that is,
between z; and x] and between x, and z7, and are essentially unrestricted
elsewhere. In the curve C'; we set Ay = Ay, while in the curve Cy we do not
restrict \. We see that for the men the estimate of A is hardly affected; the
value A = 3.1 appears to be very stable. For the women slightly less so. Still,
there is no statistical support for rejecting the specification (6).

6 Efficiency results

For both men and women the previous section provides S feasible 9 x 1 vec-
tors (25, 2ji, A) for each of the 508 matches (1016 players). Thus we obtain a
distribution of the 50 x 1016 = 50,800 observations on p;; and p;; and thus
on the efficiency eff;;. The density is estimated nonparametrically using the
quartic kernel. This standard approach, however, leads to a downward bias
near the boundary of the support, in our case near one. To avoid the bound-
ary effect we use a local linear fitting method, described in Karunamuni and
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Figure 2. Distribution of the efficiency p/p* across players
(men left, women right).

Alberts (2005). Repeating this for all R replications we find the median and
the 2.5 and 97.5 percentiles in Figure 2. The 95% band reflects uncertainty
resulting from the GMM procedure of Section 4.

For the men, the mean of the (median) distribution is 98.9% (with a
standard error of 0.2%) and the distribution can be characterized by the 5%,
25%, 50%, 75%, and 95% quantiles given by (96.7, 98.6, 99.3, 99.7, 99.9).
Hence, on average the inefficiency is 1.1%, while 25% of the players have an
inefficiency of more than 1.4% and 5% of the players an inefficiency of more
than 3.3%.

For the women, the mean of the distribution is 98.0% (0.3%) and the 5%,
25%, 50%, 75%, and 95% quantiles are given by (94.2, 97.2, 98.6, 99.4, 99.8).
Hence, on average the inefficiency is 2.0%, while 25% of the players have an
inefficiency of more than 2.8% and 5% of the players an inefficiency of more
than 5.8%. The women are thus less efficient servers than the men.

The inefficiency estimates are lower bounds because of our conservative
approach. This conservativeness has two sources. The first source consists
of the maximization over A in Section 5.2. To analyze the sensitivity of
the efficiency estimates with respect to A, we compute the efficiency in the
feasible range of 2 < A\ < 5.2 For A fixed at 2, 3, 4, and 5 we obtain mean
efficiency estimates of 98.7, 98.9, 98.8, 98.5, respectively, for the men, and
97.3, 97.8, 98.0, 98.0, respectively, for the women. These are close to the
conservative estimates above (98.9 and 98.0), so that maximization over A

2The reason why this may be considered the feasible range is that A < 2 is unrealistic,
because it implies 27 < 57.7% while the observed frequencies for x; are about 60%, and
A > 5 is unrealistic, because it implies 27 /x5 > 0.7 despite an average x1/x2 of about 0.7.
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does not appear to contribute much to the conservativeness of our efficiency
estimates.

It we assume, instead of model Cjy, one of the models Cy or Cy, then
A changes little (see Table 3), but this does not necessarily imply that the
efficiency p/p* also changes little. This, however, is the case. For example,
under model C; the mean efficiency is estimated as 99.0% for men (89.9% un-
der Cp) and 98.1% for women (98.0% under Cj). The (in)efficiency estimates
are therefore not very sensitive to small misspecifications in the y-curve.

The second source of conservativeness is the assumed optimality of (some
of the) service inputs apart from x, as discussed in Section 2.3. We now
argue that this second source is minor. First, the variable x captures most
of the relevant service inputs. Second, the potentially important other as-
pects (insofar they are not represented through ) are speed, direction, and
spin. These will vary in particular between first and second services. Model
Cs allows for separate y-curves for first and second services, and shows that
their impact on efficiency is small. Third, Walker and Wooders (2001) show
that optimality regarding direction is justified. Fourth, other aspects (emo-
tion, concentration) will have an even smaller effect on efficiency, as their
dependence on z is small. Thus, the potential harm of the conservativeness
of our approach is small, so that we may ignore the fact that our estimates
are actually upper bounds.

We conclude that the service strategy of top tennis players is not fully
efficient. This is perhaps not surprising, because 100% efficiency is unattain-
able, even for top athletes. We thus differ from Walker and Wooders (2001),
who do not reject that the probability of winning a point is the same for
a service to the left and to the right. Our main result, however, is not the
lack of full efficiency, but rather the fact that we obtain estimates of the
(in)efficiency: 1.1% (0.2%) for men and 2.0% (0.3%) for women. These are
small compared to the large suboptimalities found in laboratory experiments.
Whether the inefficiencies are also small in absolute terms is not yet clear,
because they are calculated at point level, whereas the values at match level
are more relevant.

Hence we also calculate the inefficiency at game-, set-, and match-level,
using the software developed in Klaassen and Magnus (2003). If we consider
a game, the inefficiency increases, not because the players perform differently
but because of the structure of the tennis scoring system: from 1.1% at point
level to 1.4% at game level for the men, and from 2.0% at point level to 4.0%
at game level for the women. At match level (perhaps the most natural
unit) the inefficiency does not only depend on the inefficiency of player i
but also of player 7. What would be the efficiency gain for player i if he
or she switches to serving efficiently while player j does not? The mean
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efficiency gain at match level is 2.4% (0.5%) for the men, and 3.2% (0.5%)
for the women. These estimates can be related to Romer (2006), who finds a
potential 2.1% increase of the probability of winning an (American) football
match. Despite the fact that he studies teams — for which one might expect
larger inefficiencies than for individual players — Romer’s efficiency gain is
lower than in our study, probably because his analysis considers only a small
aspect of a match, whereas the service in tennis is of great importance.

The mean match efficiency gain averages out differences in efficiency gains
across matches. In well-balanced matches, for example, serving efficiently is
more important than in matches where one player is much stronger than the
other. This issue is addressed in Figure 3. For all S draws of (z;;, zj;, \)
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Figure 3. Efficiency gain m* — m as a function of m,
match level (men left, women right).

and for each match, we compute the probabilities m;; (i wins the match
against j, both serving normally) and mj; (i wins the match against j, i
serves optimally, j serves normally). Then we regress (m;; — m;;) on my;
(50,800 observations) using nonparametric quantile regressions. We use the
same kernel as above, including the boundary correction method, though now
not only for m,; near one but also near zero. The fact that the support is
bounded also implies that the fitted regression curve exhibits flattening at the
boundaries. We avoid this by using the local linear regression method instead
of the more standard locally weighted averaging approach; see Fox (2000).
Finally, to account for the skewness of m;; — m;;, we use quantile regression
instead of the usual (mean) regression, taking the 10, 50 and 90% quantiles;
see Koenker (2005, p. 222) on locally linear quantile regression. This whole
procedure gives median and 10 and 90 percentiles regression curves, where
the 80% band represents the variation of m;; —m;; across servers. These are
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the three solid lines in Figure 3. We repeat the procedure for each of the R
replications, so that we can estimate the 95% confidence intervals around the
three curves to measure the impact of the GMM estimation uncertainty. For
simplicity, Figure 3 only contains the confidence band (dashed) around the
median curve. If the two players are approximately of equal strength then
the median efficiency gain at match level for the efficient server is 2.7% for
the men and 4.4% for the women. Moreover, 10% of the players will have an
efficiency increase of more than 10-15%. In very uneven matches, however,
serving efficiently is essentially irrelevant.

We now have estimates of the inefficiency at point, game, and match
level, but this does not yet answer the question what the effect of ineffi-
ciency is. In order to answer this question, be it crudely, we run a hypo-
thetical tournament of 128 players (seven rounds, like Wimbledon), where
in each match both players have probability 50% to win the match, except
one player who serves efficiently. The only efficient player has 52.7% (that
is, an additional 2.7%) probability of winning a match in the men’s singles
(54.4% in the women’s singles). What is the expected monetary gain for
the efficient player? In grand slam tournaments the paycheck approximately
doubles in each round. If we assume that this is exactly true, then the ex-
pected paycheck for the efficient player will rise by 18.7% for men and 32.8%
for women. At Wimbledon this would mean an expected additional income
of approximately $10,000 for the efficient man and $15,000 for the efficient
woman. Hence, even though the inefficiency at point level may seem small,
the monetary effect of inefficiency can be substantial.

Since a player has two services, we may ask whether an optimal first ser-
vice is more or less important than an optimal second service. This question
is answered in Figure 4, where we only consider the median. The graph
(x7,2%) is the same as the median in Figure 3, but now decomposed into
(x1, 25) where only the second service is optimal and (x}, z5) where only the
first service is optimal. The figure shows that players can achieve a larger
efficiency gain on their second service than on their first service, possibly
because of a misguided (inefficient) fear for a double fault.

Finally we ask whether better players are more efficient than weaker play-
ers, as we would perhaps expect. This is no tautology because better players
could also be more talented and equally efficient as weaker players. Our basic
equality is

success = talent + efficiency.

A talented but not so efficient player may be as successful as a less talented
player who is more efficient. We observe success by the ranking of a player,
and we can measure efficiency; talent is unobserved, but can be deduced.
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Figure 4. Decomposition of efficiency gain into first and second service,
match level (men left, women right).

We run the following simple linear regression:
effij = B1 + Bori + Bs|ri — ri| + Bariry + iy

To account for the random effects in eff;;, we use for each server the draws
(2, A) from Section 5.2, so that we have 50,800 observations. The regression
is performed for each of the R replications of . To combine the results across
0, we draw 100 times from each estimated distribution of 3 and, to account
for skewness, the resulting 5000 draws are summarized in a 95% confidence
interval around the median.

Two conclusions emerge. First, the confidence interval for s is (0.0004,
0.0015) for the men and (0.0004, 0.0023) for the women. Hence, higher-
ranked players are indeed more efficient. This is consistent with Walker
and Wooders (2001) who find strong rejections of mixed-strategy play in a
data set involving inexperienced card players, in contrast to their results for
experienced tennis players. Our evidence is even stronger since it comes from
a single data set.

Second, the confidence interval for 33 is (—0.0010, —0.0001) for the men
and (—0.0011, 0.0000) for the women. Hence, the closer the contest, the
more efficient players are forced to be.

7 Conclusions and implications

In a tennis match between two players, the objective of each player is to
win the match. If it is a match between two amateurs (possibly business
partners), one player may be hesitant to beat his or her boss or to win too
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decisively. But top professionals do not act like this. If we were studying
a minor tournament, even a top player might not fully commit because he
or she wants to be fit for next week’s major tournament. That is why we
study only a major tournament, namely Wimbledon. Our “utility” function
to be maximized is the probability that a player (given his or her opponent
and given the strengths of both players) wins a point while serving. It seems
likely that this is indeed the function which players wish to maximize.

We asked the question whether the service strategy for top tennis play-
ers, playing in a top tournament, is efficient. The answer is that it is not.
The rejection of perfect efficiency is not surprising. More important are our
estimates of the magnitude of the inefficiency, and our conclusion that the
inefficiencies are small. Our model and set-up are very general. Most assump-
tions have been subjected to extensive sensitivity analyses in order to check
whether (small) deviations from the assumptions have a significant impact
on the results. The results are robust, and even if the remaining restrictions
were incorrect and thereby would inflate the estimated inefficiencies, this
would only strengthen our conclusion that inefficiencies are small.

At point level the inefficiency is on average 1.1% for men (2.0% for
women). At game level the inefficiency is 1.4% (4.0%), and at match level
2.4% (3.2%). These differences do not reflect the players but the scoring sys-
tem and the fact that at match level the impact of service efficiency depends
on the quality difference between the players. In terms of expected mone-
tary gains we have calculated that the expected paycheck for the efficient
player could rise by 18.7% for men and 32.8% for women. So even small
inefficiencies can have substantial financial consequences.

What is the reason for this inefficiency? Perhaps top tennis players know
their y-curve, but are not able to solve the optimization problem. Or do they
correctly solve the optimization, but on the wrong y-curve? The decompo-
sition into first and second service (Figure 4) may help us here. From the
point of view of achieving optimality it is much easier for a server to work out
the optimal second service (maximize w(x)) than to work out the optimal
first service (maximize w(x) 4+ (1 — z)w(x3)). Nevertheless, the second ser-
vice appears to be less efficient than the first service. This provides evidence
that, although players may be maximizers, they do not mazimize the correct
function.

We also find that higher-ranked players are more efficient than lower-
ranked players, and that the closer the match, the more efficient a player
serves.

Let us now try and relate these results to economics, and in particular to
our original question whether economic agents are successful maximizers.
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First, our results show that economic agents and even top agents are not
fully efficient, and that this inefficiency can be financially nontrivial. Sec-
ond, the different inefficiency results at point-, game-, and match level show
that the market form has an impact on the measurement of inefficiency.
For example, in the case of Bertrand competition for homogeneous goods,
a “winner-takes-all” effect is induced, and this nonlinearity is not related
to productivity but to the nature of the competition. Third, the fact that
tighter matches cause players to be more efficient suggests that in a more
competitive market firms are forced to be more efficient; otherwise they will
be driven out of the market. This supports the view of many policy makers
that measures aimed at strengthening market mechanisms lead to a more
efficient economy. Moreover, it corroborates Friedman’s (1953, p. 22) point
that only return-maximizing businesses survive in a competitive market.

What contribution, if any, does this paper make to the closely related
subject of rational behavior? In rational choice theory the “rational man” is
assumed to (a) know his or her preferences over all relevant alternatives, and
(b) choose the best alternative. In our tennis framework this corresponds
to (a) a player who knows the pay-off structure p(x;, z3), and (b) is able to
maximize that pay-off.

We find inefficiency and hence the agent does not know the pay-off struc-
ture and/or is not able to solve the maximization problem. This would reject
rationality in favor of bounded rationality, and therefore corroborates find-
ings from the experimental economics literature.

The inefficiency is larger for the second than for the first service, even
though the maximization problem for the second service is easier. This sug-
gests that at least (a) is rejected, that is, the agent does not fully use his or
her true preference relations.

The inefficiency is much smaller than typically found in studies using
laboratory experiments. This can be explained by the higher motivation,
larger experience, and stronger competition among top tennis players. The
impact of competition is supported by our data. The impact of experience
is confirmed by studies in experimental economics, which find that learning
reduces violations of rationality; see van de Kuilen and Wakker (2006). An
open question in that literature is whether in the limit (infinite learning)
these violations of rationality disappear. Our results suggest that extensive
learning leads to quite rational decisions. This comes close to an affirma-
tive answer to Tversky and Kahneman’s (1986) question whether incentives,
experience, and competition ensure fully rational choices.

Another implication is that rationality might be an acceptable approxi-
mation in many applications, at least for the top agents. Friedman’s (1953,
p. 21) expert billiard players are like our top tennis players: they make their
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shots as if they know and can implement the complicated mathematical for-
mulas underlying the optimal paths of the balls. This will be approximately
true for expert billiard players, but not necessarily for the average billiard
player. Since we find that the efficiency is smaller for weak players than for
strong players, rationality may not be a good approximation for the typical
(amateur) tennis player, billiard player, or economic agent. Hence, in spite
of Friedman’s (p. 21) assertion that

It 1s only a short step from these examples to the economic hypoth-
esis that under a wide range of circumstances individual firms be-
have as if they were seeking rationally to mazximize their expected
returns,

it is not justified to think of “individual firms” (that is, not the top firms) as
rational.
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Table 2—Estimates of Men’s and Women’s Singles Equations (16) and (17)

Men Women

Coeflicients Estimate Standard error Estimate Standard error
1 1 0.5947 0.0034 0.6157 0.0051
T 0.8642 0.0031 0.8644 0.0047
Y1 0.7403 0.0037 0.6308 0.0051
Yo 0.5942 0.0044 0.5262 0.0077
Bs 1 0.0010 0.0015 0.0056 0.0029
T 0.0028 0.0013 0.0108 0.0031
Y1 0.0148 0.0017 0.0228 0.0025
Yo 0.0110 0.0020 0.0144 0.0037
Or 1 0.0007 0.0015 0.0042 0.0024
T -0.0011 0.0013 -0.0002 0.0025
Y1 -0.0062 0.0017 -0.0198 0.0026
Yo -0.0088 0.0021 -0.0200 0.0039
1 1 0.0488 0.0049 0.0685 0.0059
T 0.0317 0.0051 0.0505 0.0075
Y1 0.0547 0.0042 0.0486 0.0083
Yo 0.0540 0.0062 0.0754 0.0113
(29, 21) 0.6390 0.1540 0.2973 0.1343
(y1,21)  -0.0985 0.1226 -0.5923 0.1720
(y2,21)  0.0652 0.1377 0.2415 0.1782
(y1,22)  -0.2593 0.1671 -0.3052 0.1970
(y2, 22) 0.2700 0.2112 0.1454 0.2308
(y2,91) 0.5752 0.1360 0.0919 0.2473
Yo (y1,y1) -0.1070 0.1547 -0.5843 0.3830
(y2,92)  -0.4106 0.2347 -0.3392 0.3889
(y2,91)  -0.2375 0.1319 -0.3370 0.2411
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