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2 Resources for the Future, 1616 P Street, NW Washington, DC 20036, U.S.A. 

3Epidemiology and Modelling Group, Dept. of Plant Sciences, University of Cambridge, Downing 

Street, Cambridge, CB2 3EA, U.K. 

Abstract  

Little is known about how best to deploy scarce resources for disease control when epidemics occur 

in different but inter-connected regions. We use a combination of optimal control methods and 

epidemiological theory for metapopulations to address this problem. We consider what strategy 

should be used if the objective is to minimise the discounted number of infected individuals during 

the course of an epidemic. We show, for a system with two inter-connected regions and an epidemic 

in which infected individuals recover and can be reinfected, that equalising infection in the two 

regions is the worst possible strategy in minimising the total level of infection. Indeed we show 

analytically that this is the worst possible strategy. Treatment should instead be preferentially 

directed at the region with the lower level of infection, treating the other sub-population only when 

there is resource left over. The same strategy holds with preferential treatments of regions with 

lower levels of infection when quarantine is introduced.  

Key words: epidemiological modelling, economic modelling, quarantine, spatio-temporal 

epidemics. 
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Many epidemics outstrip the resources available to treat all infected individuals (1), especially when 

disease occurs simultaneously in different but interconnected regions (2-4). Seeking to control in 

more than one region, poses a dilemma for epidemiologists and health administrators of how best to 

deploy limited resources amongst different regions: should preference be given to treating infected 

individuals in regions with high or with low levels of infection, or to equalising levels of infection 

in different regions as fast as possible? Choosing between these options requires a combination of 

epidemiological and economic insight that hitherto have tended to remain separate: epidemiological 

models take little account of economic constraints, while economic models mostly ignore the spatial 

and temporal dynamics of disease (5, 6). 

The influence of the spatial structure of susceptible populations on the invasion and persistence of 

human, animal and plant pathogens is now well established (2-4, 7). Much contemporary 

epidemiological theory is focused on the dynamics of disease in so-called ‘structured-

metapopulations’ (8-11), in which epidemics occur in loosely-coupled sub-populations. These sub-

populations correspond with natural aggregations of susceptibles, such as hospitals, towns, cities or 

countries. Infecteds and susceptibles mix more or less freely within sub-populations, with a smaller 

movement of infecteds or inoculum amongst sub-populations. The system of loose coupling leads 

to spatially-distributed epidemics with local fade-out but global persistence (12), as infection is 

transmitted between infected and healthy sub-populations. It follows that local deployment of 

control in one region may benefit other regions by reducing the number of infecteds capable of 

transmitting infection between sub-populations but the regional benefits of control may also be 

countermanded by reinvasion from neighbouring populations. Using a combination of optimal 

control methods from economic theory (5, 13-15) with a metapopulation model from 

epidemiological theory (16-19), we show, however, that it is possible to optimise the deployment of 

control. By formalising the problem as one of control of a dynamic, spatially-structured system 
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subject to economic constraints, it becomes apparent that one plausible intuition to give preference 

to the most highly infected regions when resources are limited may be the worst possible strategy in 

limiting the amount of infection suffered by the entire population.  

The models We first consider two coupled sub-populations of susceptible individuals, in which an 

epidemic is described by a simple SIS (Susceptible-Infected-Susceptible) compartmental model. An 

SIS model is characteristic of a sexually-transmitted disease, such as gonorrhea, in which infecteds 

(I) recover naturally or after treatment (20, 21). Infected individuals do not gain immunity to the 

disease, rejoining the susceptible class (S) and so may be reinfected. This relatively simple model of 

an epidemic allows a rigorous analysis of strategies for optimal control of disease. Here we consider 

a simple control strategy in which a certain drug is administered to some or all of the infected 

individuals in two regions, each with populations of the same size N. The model is inspired by the 

analysis of Goldman and Lightwood (13) for optimal drug use in a single region. We envisage 

regions as encompassing local districts, counties, provinces or countries. The dynamics of infection 

for the SIS model in the two regions iI  are given by, 

 1
1 1 2 1 1

d ( )( )
d
I N I I I I F
t
= − β + γ −μ −α ,  (1) 

 2
2 2 1 2 2

d ( )( )
d
I N I I I I F
t
= − β + γ −μ −α ,  (2) 

in which β and γ are the transmission rates within and between sub-populations, respectively; μ-1 is 

the infectious period and α is a measure of the rate at which infecteds are cured by the drug. The 

number receiving treatment in region i is equal to Fi. We assume that the drug is not used as a 

prophylactic so that only infected individuals receive it, hence Fi ≤ Ii.  

Optimal control Suppose that expenditure on drugs is subject to a budget constraint c(F1+F2) ≤ M. 

We assume that finance is not transferable through time, so that money which is not spent 

immediately cannot be saved for the future purchase of drugs. If there are sufficient resources, 
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t .

dt

every infected individual will be treated. Otherwise, drugs are allocated so as to minimise the 

discounted sum of total infection in the two regions. Hence we choose F1 and F2 so as to minimise 

the following integral,  

  (3) 1 20
( )rtV e I I d

∞ −= +∫
This is done by optimising the current value Hamiltonian (22, 23) for the propagation equations (1, 

2) subject to the constraints of the epidemiological and economic system (See Methods and 

Supplementary Information for details).  The objective function in eqn (3) is concerned only with 

minimizing total infection across both sub-populations. We also briefly consider objective functions 

of the form . If ( )1 20

rtV e I I
∞ −= +∫ θ θ 1θ >  such an objective function will give extra weight to the 

area with the higher level of infection. The discount rate is included to allow for long-term changes, 

so giving greater emphasis to control in the short rather than the long term (5). 

Results 

Preferential treatment of region with higher prevalence First we consider preferential treatment 

of the region with higher prevalence. So long as 1 2( )I I M c+ ≤ /  all infected individuals are treated 

and the epidemic is either eliminated in each sub-population, if 0
( ) 1NR β+ γ

= ≤
α +μ

, or brought to 

some non-negative equilibrium density in each sub-population if . When, however, (I1+ I2) > 

M/c, some infecteds remain untreated and a decision must be made as to how to allocate the drug 

between regions so as to minimise the discounted numbers of infected individuals. One obvious 

strategy is to equalise the levels of infection within the two regions as fast as possible. Many people 

would regard this as the socially equitable strategy (24). Formally it involves deflection of the two 

sub-populations onto a singular solution in which the levels of infection within each region are held 

constant (See Methods and Supplementary Information (SI), Appendix A). Such a strategy would be 

0 1R >
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achieved by preferential treatment of infecteds in the region with the higher prevalence of infecteds. 

The policy is called the MRAP since it involves the most rapid approach path to the singular 

solution, in which infection is equalised in both sub-populations (Fig. 1). However, as we show 

analytically (see methods and SI),  the MRAP is the worst possible strategy within the constraints of 

the system. Rather than minimising the discounted amount of infection over time (eqn (3)) it 

maximises that quantity (Fig. 1: see methods).  

Finding the optimal strategy To find the best (i.e. optimal) path, we chose to give preference to 

the region with the lower level of infection (and, by corollary, the higher level of susceptibles), 

treating the other as a residual claimant (See methods and SI, Appendix B). Individuals in the latter 

region only receive treatment when there are resources left over after treating all the infecteds in the 

target region (Fig. 1). Although it is not possible to prove analytically that this is the optimal path, 

extensive numerical simulations using a variety of parameters support the hypothesis. This 

alternative policy is known as the ANTIMRAP since it goes away from the singular solution as fast 

as possible (Fig. 1c). By concentrating scarce resources on the least infected region, where there are 

the most susceptibles, we maximise the social benefit associated with the prevention of disease.  

<Figs 1 & 2 and Table 1 near here> 

The difference between the best and worst paths depends upon the amount of initial infection in 

each population when the treatment is first introduced and can be separated into three regimes in 

infection space (Figs 1,2, Table 1). In zone A, the best and worst scenarios each bring the epidemic 

under control. The difference between the two is relatively small. In zone B, the worst path fails to 

bring the epidemic under control while the best path does (Fig. 1) and the error of choosing the 

wrong strategy is large (Table 1). We refer to this zone as an ‘instability zone’ to indicate the fact 

that the outcome is highly sensitive to the choice of policy. Neither policy is capable of bringing the 

epidemic under control in zone C but preferential treatment of the less infected sub-population is 
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substantially more successful in reducing the discounted amount of infection (Fig. 1, Table 1). The 

same is also true in the case of the objective function involving  shown in Table 1.  Thus, even if 

some weight is assigned to equalizing levels of infection in the two regions, our results show that it 

is still better to give priority to the region with the lower level of infection. For completeness, we 

also show consistency in the results for an objective function  involving ( )2 / 3 2 / 3
1 2I I+ , in which the 

exponents are less than unity (Table 1), implying some penalty for control effort as the level of 

infection increases. 

Effects of relative transmission parameters on best and worst solutions The size of the 

instability zone B, in which the best and worst paths diverge, depends upon the relative magnitudes 

of transmission within (β) and between (γ) sub-populations (Fig. 2). Increasing the value of γ has 

two effects. It shifts the instability zone inwards reflecting the fact that it has become more difficult 

to control infection. At the same time the size of the instability zone shrinks (Fig. 2). Both the 

average and maximum values of the error ratio for the difference between the best and worst paths 

decline as (γ/β) gets larger (Fig. 2). Thus, as the rate of transmission between sub-populations, 

increases the outcome becomes less sensitive to the choice of policy. Moreover, at a certain point 

there is a sharp decline in the maximum error ratio. This occurs when γ/β becomes so large that, 

irrespective of the starting point, it is impossible to contain infection. Under these conditions, zones 

A and B disappear and zone C covers the entire infection space.  

Quarantine control Suppose that the parameter γ can be altered by imposing quarantine controls 

that restrict the reciprocal rate of cross-infection between the two regions. Such controls may be 

costly to administer and may also impose indirect costs arising from restrictions on free circulation. 

Let Q be the total amount of direct and indirect costs involved in the quarantine policy. We shall 

assume that γ and Q are functionally related as follows, 
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) t ,

  (4) 0 ( )h Qγ = γ ,

where  and . Thus, when there are no 

restrictions the cross infection parameter γ is equal to γ0. When a total ban is imposed γ = 0 and the 

cost of restrictions is equal to Qmax. We also assume that the budgets for medical treatment and for 

quarantine restrictions are separate, so that funds cannot be transferred between uses. The optimal 

strategy is now to choose F1, F2 and Q so as to minimise the following integral, 

max max[0 ]  (0) 1  ( ) 0  0Q Q h h Q dh dQ∈ , , = , = , / < 2 2d d 0h Q/ >

  (5) 1 20
(rt

QV e I I Q p d
∞ −= + + /∫

subject to the same constraints as before (see methods) plus the additional constraint  

and . In this integral Q/p measures the cost of restrictions expressed in terms of 

infection equivalents. Using the standard procedure (see methods and SI) we derive an optimal 

value for  from which it is possible to calculate the corresponding value for quarantine (from eqn 

4). Extensive numerical analysis again shows that the optimal strategy is the ANTIMRAP, giving 

preference to the population with the lower prevalence of infection while also imposing quarantine 

to restrict transmission between the two sub-populations (Fig. 3a). For the example shown in Fig. 3, 

a severe quarantine, with γ close to zero (Fig. 3b), is initially imposed to isolate the high infection 

region 2. The limited medical resources available are mostly used to saturate the low infection 

region 1 leaving only a small residual for use in region 2. As infection falls in region 1, more 

medical resources become available for use in region 2 and infection is eventually brought down 

there as well. At a certain point, infection is sufficiently low in both regions that it is optimal to lift 

the quarantine and allow γ to return rapidly to its unrestricted value of 0.03. This is done quite 

rapidly. Without imposing a temporary quarantine, it is impossible to bring infection down from the 

starting point shown. With γ fixed at 0.03 total infection increases no matter what treatment policy 

is followed (cf Fig. 1d). Thus, the possibility of quarantine may radically alter the time paths of 

max[0 ]Q Q∈ ,

0 ( )h Qγ = γ

Q̂
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infection in the two regions. Table 1 compares the integrals for the discounted cost of infection with 

and without quarantine costs.  

<Fig 3 near here > 

Conclusions and discussion 

Epidemics of the SIS form, in which infected individuals recover and can be reinfected, apply to a 

small but important class of epidemics. With just two classes and a fixed population size, our SIS 

formulation allows a rigorous analysis to show that equalising infection in each sub-population is 

the worst possible strategy when resources are limited for control. It also shows that treatment 

should be focused on sub-populations with the lower level of infected individuals. This is 

equivalent to allocating treatment preferentially to sub-populations with the higher proportions of 

susceptible individuals. Will the strategy hold for other classes of epidemics? We have explored this 

numerically for epidemics in which treated individuals become immune (SIR) or rejoin the 

susceptible class (SIRS). Rigorous analysis is extremely difficult for these types of epidemics 

because of the increased number of state and co-state variables involved, and we were not able to 

obtain unequivocal results. By means of simulation, we were able to establish that for certain initial 

conditions it is more efficient to follow the ANTIMRAP strategy of giving priority to the infected 

area with the lower level of infection than it is to equalise infection as fast as possible (see SI, Fig 4 

Appendix C).  However, this is not always the case.  The simulations also indicate that the optimal 

solution is more complex in the case of SIR and SIRS infections than in the SIS case. 

The methods introduced here provide new insights into optimal disease control. The results 

overturn a simple intuition that preference should be given to strategies designed to equalise 

infection in different sub-populations. We have shown this rigorously for SIS models and 

conditionally for some SIR models (SI, Appendix B). The social context of the optimal 
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i

(ANTIMRAP) analyses implies that equal weighting be given to the health of all individuals i.e. for 

the collective social good of the entire metapopulation. Deviation from the optimal strategy 

necessarily changes this criterion, with greater weight being placed upon the health of some 

individuals compared with others. That is, preferential treatment of the sub-population with higher 

levels of infection and fewer susceptibles necessarily places a greater weighting on the health of 

individuals in that sub-population. Such considerations require further debate and greater 

integration of epidemiological models with insight from social sciences.  

Methods 

Optimisation The objective is to minimise the discounted level of infection (Eqn (3)) subject to the 

propagation equations (1, 2) (23) and subject to the following epidemiological and economic 

constraints: 0(0)iI I= ; 0 ≤ Fi ≤ Ii, F1 + F2 = min(I1 + I2, M/c). Let { }1 2 1 2, : /A I I I I M c= + ≤ be the 

region where there are sufficient resources to treat all infecteds. Within this region the propagation 

equations are: 

 d ( )( ) ( ) , 1 2
d

i
i i j i

I N I I I I i j j i
t
= − β + γ − α +μ = , ; ≠ .  (6) 

These equations have one stable equilibrium which is given by 

 [ ]1 2
ˆ ˆ max 0 ( ) ( )I I N= = , − α +μ / β+ γ .

M c

 (7) 

We assume that . This ensures that( ) ( ) 0.5 /N − α +μ / β + γ < 1 2
ˆ ˆ( , )I I A∈ . It also ensures that any 

allowable path that enters the region A will remain permanently within this region and eventually 

converge to the stable equilibrium point. 

When there are more infecteds than can be treated, c(I1+ I2) > M and hence F1+ F2 = M/c. The 

relevant Hamiltonian in this case is 
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2

⎤⎦

1

2

1

⎦

.

,

  (8) 

( )
( )( )
( )( )

1 2

1 1 1 2 1 1

2 2 2 1 2 ,

rtH e I I

m N I I I I F

m N I I I I F

−= − +

+ − β + γ −μ −α⎡⎣
+ − β + γ −μ −α⎡ ⎤⎣ ⎦

where mi are costate variables. Since F2 = M/c – F1 we can eliminate F2 to obtain 

  (9) 

( )
( )( )
( )( )

( )

1 2

1 1 1 2

2 2 2 1

2 2 1/ .

rtH e I I

m N I I I I

m N I I I I

m M c m m F

−= − +

+ − β + γ −μ⎡ ⎤⎣
+ − β + γ −μ⎡ ⎤⎣ ⎦
− α +α −

When c(I1+ I2) > M the control variable F1 is subject to the following inequalities 

  (10) 

1

1 1

2

2 2 2 1

0,
0,

/ ,
/ 0

F
I F
F M c F
I F I F M c

≥
− ≥
≥ −
− = + − ≥

Some of these are ‘mixed’ constraints which include both state and costate variables. In this case 

the standard procedure is to include all constraints in a Lagrangean known as the ‘augmented’ 

Hamiltonian, which is given as follows (22), 

 1 1 2 1 1 1 1 2 2 1( / ) ( ) ( / )L H x F x M c F y I F y I F M c= + + − + − + + −  (11) 

where the x’s and y’s are multipliers which satisfy the complementary slack conditions 

  (12) 

1 1 1 1

1 1 1 1 1

2 1 2

2 2 1 2 2 1

0, 0, 0 ,
0, 0, ( ) 0 ,
0, / 0, ( / ) 0 ,
0, / 0, ( / ) 0 .

x F x F
y I F y I F
x M c F x M c F
y I F M c y I F M c

≥ ≥ =
≥ − ≥ − =
≥ − ≥ − =
≥ + − ≥ + − =

The first order conditions for an optimum require that 

 2 1 1 1 2 2
1

( ) 0L m m x y x y
F
∂

= − + − − + =
∂

α  (13) 

and that F1 (and hence F2) is chosen so as to maximise the Hamiltonian. This yields the following 

result:  
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2 1 1 1 2 1

2 1 2 2 1 2

If 0 then min( ) and

If 0 then min( ) and

M Mm m F I F F
c c
M Mm m F I F F
c c

− > = , = − ,

− < = , = − .
 (14) 

It must also be the case that 

 1 2i i
i i

L H y im
I I
∂ ∂

= − = − − = , .
∂ ∂

 (15) 

Finally, there are the transversality conditions. Allowable paths fall into two groups: those that 

never enter the region { }1 2 1 2, : /A I I M c I I= ≥ +

2

, and those that enter this region and never leave it 

again. In the former case, there are alternative transversality conditions. Define the function W as 

follows 

  (16) ( )1 2 1 20
( , ) d

t rtW Z Z e I I t−= +∫
where the integral is evaluated along the path defined by the “treat all” propagation equations (1) 

and starting from the point 1 1 2(0) , (0)I Z I Z= = . The transversality conditions for a path that enters 

this set are as follows: 

 
2 1

2 1

1 2 1 1 2( )

W Wm m
t t

rW H I I m I m I

∂ ∂⎛ ⎞− = − −⎜ ⎟∂ ∂⎝ ⎠
= = − + + + 2

 (17) 

 

The singular solution Suppose that the control variables are chosen from the interior of their 

domains so that 0 < Fi < Ii . This implies that 0i ix y= =  for i=1,2 and hence from (8) it follows that 

. Suppose also that the latter equality holds throughout an open interval of time. Then 

from which it is simple to show that I1 = I2, whence 

2m m= 1

1 12m m= 2I I=  and F2 = F1 = M/2c. This yields 

the “singular” solution which is given by, 

 d ( )( ) 1 2 2
d 2

i
i i j i

I MN I I I I i j
t c

1α
= − β + γ −α − , = , ; = , .  (18) 
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The most rapid approach path The most rapid approach path (MRAP) involves reaching the 

singular solution as fast as possible and remaining on this solution thereafter. This means giving 

preferential treatment to the sub-population with the higher prevalence of disease until disease in 

the two populations is equalized, and then treating these populations equally. This strategy implies 

that, 

 
If then min( ) and

If then 2
i j i i j i

i j i j

I I F I M c F M c

I I F F M c

> = , / = /

= = = / .

F− ,

2

2

 (19) 

To confirm that this strategy is the worst case we show that this path maximises the discounted level 

of infection (eqn (3)). The Hamiltonian is identical to eqn (9) save that the first term ) is 

replaced by ) for maximisation rather than minimisation of the integral V . Hence the 

conditions on F1 for maximisation are identical to eqn 

1(rte I I−− +

1(rte I I−+ +

(10) only this time the costate variables are 

positive. Mangasarian’s sufficiency conditions for a maximum require that the Hamiltonian be a 

concave function of I1, I2 and F1
 (22). These conditions require that the following matrix is negative 

semi-definite, 

 

2 2 2

2
1 2 1 1 1

1 1 22 2 2

1 2 22
1 2 2 1 2
2 2 2

2
1 1 2 1 1

2 ( )
( ) 2 0

0 0

H H H
I I I F I

m m m
H H H m m m

I I I F I

H H H
I F I F F

⎡ ⎤∂ ∂ ∂
⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥ − − + 0

,
0

⎡ ⎤⎢ ⎥∂ ∂ ∂ ⎢ ⎥= − + −⎢ ⎥ ⎢ ⎥∂ ∂ ∂ ∂ ∂⎢ ⎥ ⎢ ⎥⎣ ⎦⎢ ⎥∂ ∂ ∂⎢ ⎥
∂ ∂ ∂ ∂ ∂⎢ ⎥⎣ ⎦

β γ
γ β  (20) 

which will be the case if m1 ≥ 0 and 

  (21) 2 2 2
1 2 1 24 ( )m m m mβ − γ + ≥ 0 .

Provided β > γ the above inequality is always strictly satisfied on the singular solution where m1 = 

m2. By continuity it must also be weakly satisfied on the MRAP for points close to the singular 

solution. Our simulations indicate that strictly positive costate variables can be found that satisfy the 

augmented Hamiltonian conditions along the whole length of the MRAP. Moreover, for the 



14 

   

 

parameter values we consider, the inequality given in eqn (21)  is also satisfied along the whole 

length of the trajectory to the singular solution. This condition establishes that the Hamiltonian is 

concave. For paths that remain permanently outside of the region { }1 2 1 2, : /A I I I I M c= + ≤  the 

transversality conditions li for i=1,2 are satisfied. For paths that enter this region the 

transversality condition at the point where they enter is satisfied. For paths of this type an 

additional concavity condition is required (22). Simulations indicate that is concave. 

Under these conditions, the MRAP maximises the integral V  and is therefore as bad as, or worse 

than, any other path that satisfies the constraints of the problem (22). 

m ( ) 0it
m t

→∞
=

1m m= 2

1 2( , )W Z Z

Finding the optimal path We propose an alternative candidate for the optimal path when (I1+ I2) > 

M/c. The path is determined by the following decision rules, 

 
If then min( ) and

If then min( ) and

or - .

i j i i j i

i j i i j i

I I F I M c F M c F

I I F I M c F M c F

vice versa

< = , / = / −

= = , / = / −

,

,  (22) 

This path is the ANTIMRAP in which preference is given to treating the sub-population with lower 

prevalence of infection. Standard sufficiency theorems cannot be used to prove analytically that this 

is the optimal path since m1 < 0 and the Hamiltonian is not concave. However, simulations indicate 

that the ANTIMRAP is in fact optimal (SI, Appendix B).  

Using a 100 times 100 grid of starting points we compared the following three paths. Path 1 which 

always gives priority to region 1, Path 2 which always gives priority to region 2, and the MRAP 

which equalises infection levels in the two regions as fast as possible and then splits the drug 

equally between them. Starting from an initial point with I1 < I2, the smallest integral was obtained 

with Path 1, the next smallest with Path 2, and the strictly  largest integral with the MRAP.  From 

an initial point with I2 < I1, the smallest integral was obtained with Path 2 and the strictly largest 

integral with the MRAP.  With I1 = I2 initially, the MRAP always gave the strictly largest integral,  
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but Path 1 and Path 2 gave identical integrals.  We were also able to show that the three paths just 

described were the only paths which entered the treat-all set (given a suitable starting point) and 

satisfied both the Hamiltonian and transversality conditions. This suggests that the AntiMRAP 

strategy of favouring the least infected area is best. We were not able to rule out the possibility that 

there are other paths which yield an even lower integral than the AntiMRAP, but we were not able 

to locate such a path from any starting point. 

Quarantine The Hamiltonian for the case with quarantine is the same as in eqn  (9) except that γ is 

replaced by γ0h(Q) as in eqn (4) and the objective function by eqn (5) The decision rules are 

identical to eqn (22) with the additional constraint that the quarantine variable Q is selected from 

the set [0, Qmax] so as to maximise the Hamiltonian, taking all other variables as given. The optimal 

value of Q is thus equal to, 

 1 1 2 2 2 1
ˆ argmax [ ( ) ( ) ] ( )

rte QQ Q m N I I m N I I h Q
p

−⎛ ⎞
= − + − + −⎜ ⎟

⎝ ⎠
.  (23) 

Error of worst relative to best path The error ratio for the worst compared with the best paths is 

computed by (Vworst – Vbest)/ Vbest in which Vworst and Vbest are the values of the discounted infection 

along the best and worst paths, respectively. We distinguish between the maximum and the average 

value (computed as the average error over all starting points in infection space for which (I1+ I2) > 

M/c for given ratios of transmission between and within sub-populations. The instability region in 

which the best path leads to disease control and the worst to explosive spread shown in Fig. 2 were 

computed for each of 21 x 21 starting points laid out on a uniform grid on the infection space. When 

γ = β the two regions are effectively a single region and all allowable treatment policies lead to 

exactly the same trajectory for total infection and hence to the same value for the integral V  (eqn 

3). 
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Table 1. Differences and errors associated with best and worst strategies* to control disease in a metapopulation 
when resources are limited. Alternative objective functions are shown for the SIS model without 
quarantine. 

 

Zone Path 1(0)I  2 (0)I  1( )I ∞  2 ( )I ∞ ( )1 20
drte I I t

∞ − +∫
(% Error)† 

( )2/3 2/3
1 20

drte I I t
∞ − +∫  

(% Error)† 

( )3/ 2 3/ 2
1 20

drte I I t
∞ − +∫  

(% Error)† 

 SIS model without quarantine  

A Worst 0.090 0.165 0 0 2.27 (5.09) 4.66 (4.59) 0.78 (3.77) 

 Best 0.090 0.165 0 0 2.16 4.45 0.75 

B Worst 0.085 0.180 0.69 0.69 3.38 (30.05) 5.99 (19.07) 1.51 (52.04) 

 Best 0.085 0.180 0 0 2.59 5.03 0.99 

C Worst 0.100 0.250 0.69 0.69 6.14 (18.76) 8.89 (14.05) 3.68 (19.81) 

 Best 0.100 0.250 0.19 0.80 5.17 7.73 3.07 

 SIS model with quarantine  

C Best 0.100 0.250 0 0 3.83   
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*Parameter values as for Fig. 1. †Computed by (Vworst – Vbest)/ Vbest in which Vworst and Vbest are the values of the 

discounted infection along the worst and best paths, respectively. 



19 

   

 

Figure Legends  

Fig. 1 Comparison of disease progress curves for best and worst policies. (A-C) Progress of disease 

in two inter-connected regions 1 and 2, with treatment dynamics in insets, showing small 

differences between best and worst paths when initial infection occurs in Zone A (Table 1). (D-F) 

Best and worst paths diverge markedly when initial infection occurs in the instability zone B (Table 

1). (G-I) Disease continues to increase but markedly less steeply in the region with the lower 

infestation (region 1) when infection occurs in Zone C (Table 1). Default parameters are 0 25α = .  

(efficiency of control), 0 25β = .  (within-region transmission rate),  (between-region 

transmission rate),  (discount rate), 

0 03γ = .

0 1r = . 0 05= .μ  (recovery rate), 0 2M = .  (fixed costs) with 

.  1N =

Fig. 2 Transmission between regions and the error between best and worst policies. (A-C) Effect of 

the between-region transmission rate, , (scaled by γ β ) on the magnitude of the instability zone B 

(shown in red) in which the best and worst paths lead to marked differences in epidemic behaviour 

with one controlling the epidemic and the other leading to ’explosive’ infection towards high levels 

of infection (see Fig. 1). (D) Effect of changing the ratio of  on the maximum error (red line) 

and average error (blue line) between best and worst policies.  

/γ β

Fig. 3 The role of quarantine. (A) Disease progress curves in the two regions with treatment 

allocation shown in inset, together with quarantine. (B) Quarantine effort and corresponding value 

for : note the sudden change in quarantine policy. (C) Phase portrait showing how a potentially 

explosive epidemic (cf Fig. 1j and Table 1) can be brought under control by optimising quarantine 

together with preferential treatment of the region with the lower prevalence of infection. Default 

parameters as in Fig. 1, except that 

γ

1p = , b=100, Qmax = 5  where  and 

.  

0 ( )h Qγ = γ 0 0 03γ = .

max max( ) ( ) (1 )bQ bQbQh Q e e e− −−= − / −
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