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Abstract

I analyze the equilibrium in a labor market where firms offer wage-tenure con-
tracts to direct the search of employed and unemployed workers. All workers are
identical, every applicant observes all offers, and there is no coordination among
individuals. I formulate the equilibrium with directed search and show that it ex-
ists. In common with undirected search, wages increase and quit rates decrease with
tenure. Moreover, on-the-job search and wage-tenure contracts produce a continuous
wage distribution among homogeneous workers. In contrast to undirected search, the
applicants choose their targets optimally and separate themselves according to the
values of their current contracts. Such endogenous separation generates several novel
implications. First, wage mobility is limited in the sense that workers choose to move
up on a wage ladder gradually when applying for jobs. Second, the density function
of the wage distribution is decreasing at high wages. Third, an increase in the unem-
ployment benefit or the minimum wage has no effect on an employed worker’s wage
contract and his job-to-job transitions. Finally, equilibrium contracts and employed
workers’ job-to-job transitions are independent of the distribution of workers. The
last feature makes the model tractable for studying business cycles with on-the-job
search.
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1. Introduction

Directed search is a matching process in which an individual can use his offer to affect his
matching rate. The objective of this paper is to study the equilibrium in a labor market
where firms offer wage-tenure contracts to direct workers’ search. A wage-tenure contract
is a time profile of wages which describes how a worker’s wage will evolve with tenure.
Employed workers can search on the job. I characterize the equilibrium and establish its
existence. The equilibrium yields novel predictions about job-to-job transitions, the wage
distribution, and effects of unemployment policy.

To see why directed search is interesting to study, it is useful to contrast it with the
large literature on undirected search developed from Diamond (1982), Mortensen (1982),
and Pissarides (1990). There are two classes of models in this literature. In one class, as
in the three pioneering works, prices (wages) are a result of bargaining after individuals
are matched. In the other class, prices are posted but searchers do not know who posted
what prices before they are matched (e.g., Burdett and Mortensen, 1998, and Burdett
and Coles, 2003). In both classes of models, search is undirected because prices play no
role, ex ante, to direct workers to particular matches. Although modelling search as an
undirected process is interesting, there are strong reasons for studying directed search.
First, some search is directed rather than completely random, particularly for workers
who search on the job. For example, applicants often have information about wages from
job advertisement, word of mouth, or referrals. Second, undirected search generates an
array of market inefficiencies, whose corrective policy depends on the details assumed
for the matching and price determination processes (see Hosios, 1990). Directed search
can eliminate most of these inefficiencies. Third, wage dispersion in undirected search
models is sensitive to the assumption that a worker knows at most one wage before search.
For example, the continuous wage distribution in the well-known model of Burdett and
Mortensen (1998) would become degenerate if each applicant knew two or more wages.
Directed search models do not have this sensitivity because they allow each applicant to
observe all offers before the application.

During the last fifteen years or so, a literature has grown to analyze directed search.
Peters (1984, 1991) and Montgomery (1991) provide two of the earliest formulations. Ex-
amples of the further exploration include Moen (1997), Acemoglu and Shimer (1999a,b),
Julien, et al. (2000), Burdett, et al. (2001), Shi (2001, 2002), Coles and Eeckhout (2003),
Galenianos and Kircher (2005), and Delacroix and Shi (2006). They have shown that an

equilibrium with directed search and its efficiency properties are significantly different from
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those with undirected search.

However, the literature of directed search has its own shortcomings. First, it has ignored
wage-tenure contracts and on-the-job search, by assuming that each firm posts a fixed
wage for the entire duration of a worker’s employment and that a worker must quit his
job first before searching for another job. Without wage-tenure contracts, this literature is
unable to explain the empirical regularities that wages rise and quit rates fall with tenure
(e.g., Farber, 1999). Without on-the-job search, the literature cannot predict job-to-job
transitions which constitute a large part of the flow of workers in the data. Second, directed
search models generate only a few number (and often a singleton) of equilibrium wages
among homogeneous workers, in contrast to the data and to the undirected search model by
Burdett and Mortensen (1998). Given the appealing features of directed search discussed
above, there is an urgency to advance the theory to bridge these gaps with the data.

To see what is needed to characterize a directed search equilibrium with contracts,
let me compare the task with the one in undirected search, which is accomplished by
Burdett and Coles (2003, BC henceforth). With undirected search, workers are assumed
to send their applications randomly to a pool of recruiting firms. With directed search,
however, each worker’s application must be optimal in the tradeoff between an offer and
the likelihood of obtaining the offer. Similarly, each firm understands that it can raise
the offer to entice more workers to apply to it. To describe this tradeoff, an equilibrium
must determine two new objects in addition to optimal contracts. One is the employment
rate function, which describes how the rate at which an applicant gets an offer varies
with the offer. The other is the hiring rate function, which describes how the rate at
which a recruiting firm successfully hires a worker varies with the offer. A challenge in
characterizing the equilibrium is to show that these functions exist.

I formulate the equilibrium in an environment where all matches have the same produc-
tivity, and then establish the existence of the equilibrium. In equilibrium, the hiring rate
associated with an offer is indeed an increasing function of the offer, and the employment
rate is a decreasing function of the offer. Thus, the tradeoff between an offer and the
matching rate is meaningful.

On wage-tenure contracts, the equilibrium with directed search preserves several at-
tractive properties of the undirected search model by BC. First, wages increase and quit
rates fall with tenure. Second, there is a baseline contract, where wages start at the lowest

equilibrium level and then increase with tenure, and all other equilibrium contracts are

Delacroix and Shi (2006) and Julien et al. (2006) are the exceptions that introduce on-the-job search
into directed search models, but they do not examine wage-tenure contracts.
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sections of this baseline contract with different initial wages. Third, on-the-job search and
wage-tenure contracts together generate a continuous wage distribution in the equilibrium,
even though all matches have the same productivity. On-the-job search creates jumps in
wages when a worker changes the job, while wage-tenure contracts provide smooth increases
in wages when a worker stays with a job.

Beyond these similarities, the equilibrium here has little in common with undirected
search. A striking difference is that directed search creates the dichotomy that individuals’
optimal decisions, equilibrium contracts and the matching rate functions are independent
of the distribution of workers. In undirected search models, in contrast, the distribution of
workers is critical for determining individuals’ optimal decisions. The dichotomy generates
novel results of comparative statics. For example, although an increase in the unemploy-
ment benefit or a minimum-wage requirement affects the distribution of workers, it has
no effect on an employed worker’s job-to-job transition rate and his future wage path,
given the worker’s current wage. Moreover, the dichotomy makes the model tractable for
business cycle research with on-the-job search, as I will elaborate in the concluding section.

The second difference is in job-to-job transitions and wage mobility. With directed
search, each worker optimally chooses to apply to a unique target which is an increasing
function of the worker’s state, i.e., the value of the worker’s current contract or unem-
ployment benefit. As workers separate themselves this way, wage mobility is endogenously
limited by workers’ current states despite that there is no difference in productivity across
matches. Such limited wage mobility seems realistic (see Buchinsky and Hunt, 1999). In
contrast, undirected search models (e.g., BC, 2003, and Burdett and Mortensen, 1998)
predict that a worker can receive an offer that lies anywhere in the support of the wage
distribution, and that a worker can transit to any wage that lies above his current wage.

The third difference from undirected search is the wage distribution. As said earlier,
wage dispersion generated by directed search is robust because all applicants are allowed
to observe all offers before they apply. Moreover, the density function of the wage dis-
tribution is decreasing at high wages. This feature is an empirical regularity (see Kiefer
and Neumann, 1993) which cannot be captured by an undirected search model with ho-
mogeneous matches. The equilibrium in the latter model necessarily predicts an increasing
density function of equilibrium wages. To modify this prediction, the literature of undi-
rected search has introduced heterogeneity across matches (e.g., van den Berg and Ridder,
1998). It is important to show that directed search can generate a decreasing wage density
without such heterogeneity.

Now let me briefly contrast the current paper with Delacroix and Shi (2006), who also
3



examine directed search on the job. That paper excludes wage-tenure contracts by as-
sumption. Incorporating wage-tenure contracts allows me not only to explain the patterns
of wages and quits over tenure, but also to produce a rich wage distribution. In Delacroix
and Shi, the equilibrium wage structure is a wage ladder, the discreteness of which makes
the analysis quite messy. Wage-tenure contracts fill in the gap between any two rungs of
the ladder, because wages increase with tenure. Moreover, the smoothness enables me to
characterize the equilibrium more generally.

To emphasize the differences between directed and undirected search, I maintain four
assumptions imposed by BC. First, workers are risk averse; second, the capital market is
imperfect so that workers cannot borrow against their future income. These two assump-
tions are important for generating the wage-tenure relationship, as discussed by BC. Third,
a firm does not respond to the employee’s outside offers. How reasonable this assumption
is varies across different types of markets.? In any case, the assumption is commonly im-
posed in the literature, and it enables me to compare the results clearly with those in BC.
For a model of undirected search without this assumption, see Postel-Vinay and Robin
(2002). Finally, all matches have the same productivity and the productivity of a match is
public information. For private information or learning about productivity, see Jovanovic
(1979), Harris and Holmstrom (1982), and Moscarini (2005). Such productivity differences
between matches or over time are clearly important for wage dynamics and turnover, but
they are inadequate for explaining the residual wage dispersion in the data. Abstracting

from them enables me to have a clear exploration of search frictions.

2. The Model

Consider a labor market that lasts forever in continuous time. I normalize the rate of time
preference to zero. There is a unit measure of risk averse workers whose utility function is
u(w), where w is income. Workers are not able to borrow against their future income, and
so the lower bound on wages is 0. All workers have the same productivity. When employed,
each worker produces a flow of output, y > 0. When unemployed, a worker enjoys a flow of
utility, u(b), which is derived from leisure and other benefits in unemployment. However,

I will refer to b simply as the unemployment benefit.

2In many occupations, workers choose to quit for outside offers rather than ask their employers to
match the offers. Matching outside offers is more common in other occupations such as economists and
professional athletes. However, in these occupations, a main motivation for matching offers might be
the competition for workers’ ability. Because the current model abstracts from all heterogeneity across
matches, the assumption of not responding to outside offers may not be unreasonable.
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Assumption 1. The utility function has the following properties: 0 < u/(w) < oo and
—o0 < u(w) < 0 for all w € (0,00); u/(0) = oo; and u(0) = —oo.

Risk aversion in the above assumption is not common in the labor search literature,
but it is necessary for wage contracts to be non-trivial. The assumption u(0) = —oo is
imposed for the following reason discussed extensively by BC: if «(0) is large, wages may
be zero at the beginning of a contract. Although this possibility does not pose serious
difficulties to the analysis, it is cumbersome to be included and, hence, excluded by the
sufficient condition u (0) = —o0.

All workers face the possibility of death, which arrives at a Poisson rate § € (0,00),
and a dead worker is replaced with a newborn who enters unemployment. Death is the
only exogenous separation, and so employment is permanent until either the worker dies
or quits for another job. Burdett and Coles (2003) also model exogenous separation as
death, rather than separation into unemployment. The modelling simplifies the analysis
by eliminating savings: because an employed worker never returns to unemployment, the
worker has no incentive to save provided that wages increase with tenure.?

There are a large number of identical and risk-neutral firms that can enter the market.
Entry is competitive: every firm can post a vacancy at a flow cost k£ > 0. As common
in the literature, a firm has a production technology with constant returns to scale and
considers different jobs independently. Normalize the production cost to 0. Recruiting
firms announce wage-tenure contracts to compete for workers.

Firms are assumed to commit to the contracts, although a worker can quit his job at
any time. This assumption has two requirements. First, as commonly assumed in the
search literature, a firm cannot continue to recruit for a filled job in an attempt to replace
the current employee or to renegotiate the contract with him. Second, as discussed in the
introduction, a firm cannot respond to the employee’s outside offers.

A contract specifies a path of wages as a function of the worker’s tenure, conditional
on the worker’s employment in the firm. Because only the lifetime utility generated by a
contract matters to a worker, I express a contract alternatively as a path of such utilities,
or values. To do so, consider a contract offered at time s. Let V(¢,s) denote the value
of the contract to the worker after a worker has worked under the contract for a length
of tenure t. This value is the discounted sum of the worker’s expected utility generated

by the remaining wage path in the contract from time (s + ¢) onward, conditional on the

3If there is exogenous separation into unemployment and if workers can save, then only the workers
with sufficiently high wages will save against the event of separation when wages increase with tenure.
This incentive to save can be eliminated if there are severance pays that increase sufficiently with wages.
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worker’s optimal quitting strategy in the future. I refer to the value V (0,s) as an offer
at time s and the path of values, {V (¢, s)},-,, as the contract that delivers the offer. Let
w(V (t,s)) denote the wage level at tenure ¢ according to this contract. I call the function
w(V') the wage function.

Throughout this paper, ¢ denotes a worker’s tenure rather than the calendar time. To
unify the notation, I denote an unemployed worker’s “tenure” as t = @. The value for an
unemployed worker is denoted V,, = V (&, s) and the unemployment benefit is expressed
as w (V(@,s)) = b, for all s.

All offers are bounded in [V, V], where

V =u(w)/s, V =u(b)/é.
w is the highest wage which will be determined in Lemma 3.2 and V is the lifetime utility of
a worker who is employed at the highest wage permanently until death. The lower bound
V is the lifetime utility of an unemployed worker who is deprived of the opportunity of
applying to jobs in the entire lifetime. Because an unemployed worker does have the
opportunity to apply for jobs, all equilibrium offers will be strictly higher than V.

Both unemployed and employed workers can search for jobs. At any instant, a fraction
Ao of unemployed workers and a fraction \; of employed workers are randomly selected to
receive job application opportunities. I allow for the possibility Ag = A\; = 1 by letting Aq,
A1 € (0,1].* A worker who receives the application opportunity observes all firms’ offers
instantly without any cost and then chooses the offer to apply. As in most search models,
a worker can apply to only one offer.’

Individuals cannot coordinate their actions. If two or more workers apply to the same
offer, the firm randomly selects only one to employ. Thus, the coordination failure generates
unemployment. Moreover, if an employed worker gets an offer, the worker must quit his
current job before accepting the offer. As discussed in the introduction, the worker’s
incumbent firm is assumed not to respond to the worker’s outside offers. A job is destroyed

when the worker either accepts another firm’s offer or dies.

4The X'es are bounded above by one because they are the fractions of workers who receive job application
opportunities at any instant, not the Poisson rates.

5Let me clarify two assumptions here. One is that an applicant observes all offers. This assumption
is not necessary, because the essential results are the same if each applicant is assumed to observe two
offers that are randomly drawn from the offer distribution (see Acemoglu and Shimer, 1999b). The second
assumption is that each applicant can apply to only one offer at a time (for multiple applications, see
Galenianos and Kircher, 2005). In continuous time, this assumption is not as restrictive as it may sound.
Although a worker in reality may be able to send out multiple applications, the probability with which
two or more of his applications will be received by different firms at the same instant is negligible.
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Because workers observe the offers before they apply, the offers can direct workers’
search. Workers and firms both make the tradeoff between an offer and the matching rate
at that offer. When making an offer, a firm faces a hiring rate function, q(.). That is,
a firm knows that it can change the offer to affect its hiring rate directly according to
q(.). Similarly, an applicant understands that different offers are associated with different
employment rates according to an employment rate function, p(.). Because p and q are
Poisson rates instead of probabilities, they can exceed one.

The functions ¢(.) and p(.) are equilibrium objects, since they must satisfy two equi-
librium requirements. First, they must be consistent with aggregation. That is, as firms
and workers make their choices under these functions, the resulting matching rates must
indeed be given by these functions. Second, the hiring rate function must ensure that the
expected profit of recruiting be the same for all equilibrium offers. Delaying the second
requirement to section 4, I specify the first requirement below.

Let me start with a matching function, M(6, 1), which specifies the measure of matches
between a measure 6 of workers and a unit measure of firms. Refer to 6 as the tightness.
Assume that M is linearly homogeneous. Given the two functions p(.) and ¢(.), individuals’
decisions induce the tightness, 8(V'), at each value V. Aggregate consistency requires that
the matching rates satisfy: ¢(V) = M(6(V),1) and p(V) = M(0(V),1)/0(V). Using these
relationships to eliminate 6, I can express aggregate consistency as p(V) = M(q(V)).

The function M (q) embodies all essential properties of the matching function. From
now on, I will take M(q) as a primitive of the model and refer to it as the matching
function.® To specify the properties of the matching function, let ¢(V) € [¢,q] for all V,
with 0 < g < g, where ¢ is an exogenous upper bound on ¢ given by the matching function
and ¢ will be restricted by (5.4) later.

Assumption 2. The matching function M/(q) satisfies: (i) M(q) is continuous for all
q € [q,q] and, for all q in the interior of (q,q), the derivatives M'(q) and M"(q) exist and
are finite; (ii) § < oo and M (q) = 0; (iii) M'(q) < 0; (iv) —qM"(q)/M'(q) < 2.

Part (i) is a regularity condition that is satisfied by many well-known matching func-
tions. Part (ii) is imposed for the convenience of working with bounded functions. Part

(iii) is equivalent to 0 < M,/ M < 1, which is satisfied by all matching functions of

6T follow Moen (1997) and Acemoglu and Shimer (1999a) to take the matching function as given. In
contrast, some directed search models have derived the matching function by aggregating agents’ strategies,
e.g., Peters (1991), Burdett et al. (2001), Julien et al. (2000) and Delacroix and Shi (2006). The main
results of the current paper continue to hold when the matching function is endogenized so.
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constant returns to scale that are strictly increasing in the arguments. Part (iv) restricts
convexity of M(q), which will be useful for ensuring uniqueness of a worker’s optimal appli-
cation decision.” With these assumptions, I will look for an equilibrium with the following
properties: ¢'(V) > 0 and p'(V) < 0.

The following example gives two common matching functions and finds the restrictions

for them to satisfy Assumption 2:

Example 2.1. One matching function is the so-called urn-ball matching function. Derived
endogenously by Peters (1991) and Burdett et al. (2001), the function has the form:
M(0,1)=q (1 — 6*9) with ¢ < oo, which implies:
q
M=
This function satisfies Assumption 2. Another matching function is the CES function:
M(0,1) = [ab? + 1 — a]"/?, where a € (0,1) and —oco < p < 1. This function implies:

qp_1 -1/p
M(q)zq( - —l—l) )

With this function, parts (i) and (iii) of Assumption 2 are satisfied. Part (ii) is satisfied
iff —0o < p < 0. In this case, ¢ = (1 — a)'/?. Part (iv) is satisfied iff & > 1 — (1 — p)g”/2.
When p < —1, this condition is satisfied for all o > 0. When —1 < p < 0, the condition

puts a lower bound on «.. Note that, for p < 0, the derivative M'(q) is unbounded at q = q.

3. Workers’ and Firms’ Optimal Decisions

In this section, I characterize individuals’ optimal decisions and their value functions.
Because this paper focuses on stationary equilibria, the time at which a contract is offered
does not matter. Thus, unless it is necessary, I suppress the starting time of a contract, s,

from the notation such as w (t,s) and V (¢, s).

3.1. Optimal Application

Workers’ search is directed by the employment rate function, p(V'). This equilibrium object
gives the Poisson rate of obtaining an offer V' upon application. I will focus on equilibria
in which p(.) has the properties described in the following claim. The procedure of the
analysis is to characterize individuals’ decisions first by assuming these properties of p(.)

and then verify them in the equilibrium (as an implication of Lemma 5.1 later).

"For a general matching function, part (iv) of the assumption requires 1 — OM;/M <
[~OM11/(2M1)]'/?, where the left-hand side is the share of vacancies in the matching function M.
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Claim 1. p(V) is bounded, continuous and concave for all V. Moreover, p(V') is continu-

ously differentiable and strictly decreasing for all V <V, with p(V) = 0.

Let me analyze the application decision of a worker who has tenure ¢. Refer to the
remaining value of the worker’s contract, V' (), as the worker’s state. (For an unemployed
applicant, set t = @ and V (@) = V,.) After receiving a job application opportunity, the
expected increase in the value for the worker is:

D(V(t)) = fel[lvl,f(i%fv]p(f) [f =Vl (3.1)

Denote the solution as f(t) = F(V(t)). The following lemma describes the main features

of the optimal application (see Appendix A for a proof):

Lemma 3.1. F(V)=V. For all V <V, the following results hold: (i) There is a unique
and interior solution to (3.1), f = F(V); (ii) F(.) is continuous and D(V') is differentiable,
with D'(V)) = —p(F(V)) < 0; (iii) F(.) is strictly increasing; (iv) F'(V') obeys:
pEV)

P'(E(V))

Moreover, [F(Vy) — F(V1)] / (Vo — Vi) < 1/2 for all Vo # Vi; (v) If p(.) is twice differen-
tiable, then F'(V') is differentiable with 0 < F'(V') < 1/2, and D(V') is twice differentiable.

V=FV)+ (3.2)

For a worker at a value V', the offer F'(V') is the only optimal target of application.
Other offers are not optimal for this worker, despite that the worker observes all of them.
Offers higher than F'(V') have too low employment probabilities to be optimal, while offers
lower than F(V') have too low values. Only the offer F'(V') provides the optimal tradeoff
between the value and the probability of obtaining it.

Not only is a worker’s optimal target of application unique, it is also increasing in the
current value for the worker. That is, the higher the worker’s current value (state), the
higher the offer to which the worker will apply. Thus, the applicants choose to separate
themselves according to their states. This endogenous separation is optimal because an
applicant’s payoff function has the single-crossing property with respect to the worker’s
current value. An applicant’s current job is a backup for him when he fails to obtain the
applied job. The higher this backup value is, the more the worker can afford to “gamble”
on the application and, hence, the higher the offer to which he will apply.

Figure 1 illustrates the single-crossing property in the (f,p)-space for two workers, 1

and 2. Worker 1 is at value V; and worker 2 at value V5,, where V5, > V;. Worker i’s
9



indifference curve can be written as f = V; + D;/p, for i = 1,2. Suppose that the two
indifference curves cross each other at a point, (fy, po), where fo > V5. At this point, the
slope of worker ¢’s indifference curve is df /dp < 0, and the absolute value of this slope
decreases with V;. This implies that the worker with the higher value (worker 2) is more
willing to tolerate a low employment probability than does the worker with the low value.
Equivalently, to compensate for the same reduction in the probability of getting an offer,

worker 2 needs a smaller increase in the offer than worker 1 does.

f 4

»

indifference curve for V,

0> df/dp = - (fo - V,)/po

indifference curve
fo L ... ............. ....................... for V, >V,

P2 P1 Po P

Figure 1. Monotonicity of a worker’s optimal application

The optimality of the application decision is one of the key differences between this
model and the BC model or, more generally, between directed search and undirected search.
By assumption, models with undirected search have no counterpart to the above decision
problem of an applicant. This contrast between the two models leads to sharply different
predictions on job-to-job transitions and mobility. Directed search predicts a definite pat-
tern of transition and endogenously limited mobility of workers between values or wages.
For example, take two workers whose current contracts have remaining values Vi and V5,
respectively, with V; < V,. Let V4 = F(V}) and Vg = F(V;). For the two workers, the
probability of transiting immediately to a value above Vg is zero. Moreover, conditional
on that both have transited to new jobs, the likelihood between worker 2’s and worker 1’s
probability of having transited to a value V' € [V, Vp) is zero. With undirected search, in
contrast, the probability of transiting to values above Vg is positive for both workers, and
the likelihood ratio of transiting to V' € [V4, Vp) is a positive and finite constant.

In addition to limited wage mobility, directed search also yields predictions on the gain

to a worker from an application. First, the higher the value of an applicant’s current job,
10



the less he gains from an application. The expected gain from an application, D(V'), and
the actual gain in percentage, (F'—V')/V, both fall as V increases. However, this decreasing
gain may not necessarily mean a decreasing gain in wages, because it partly reflects the
worker’s decreasing marginal utility. Second, D”(V) > 0. That is, the decrease in the

expected gain from an application slows down as the worker’s current value increases.

3.2. Value Functions of Workers and Firms

Throughout this paper, denote & = dz/dt for any variable x. Recall that ¢ denotes tenure
and that an unemployed worker’s tenure is denoted as t = @. For an employed worker, the
value can change over time for four possible reasons. The first is wage changes with tenure.
The second is the event that the worker obtains a better offer and quits the current job.
The third is death. The fourth is the adjustment to the steady state, which is abstracted
from by the focus on stationary equilibria. Because the rate of time preference is zero, the

value for an employed worker evolves as follows:
V(t) = 6V (t) — u(w(V(1))) = MD(V(t), (3.3)

where D(V') is given by (3.1). Since ¢ denotes tenure, V (t) = 0 if wages are constant over
tenure. In particular, because the unemployment benefit does not change over time, the

value for an unemployed worker (denoted as V,) obeys:
0 =06V, —u(b) — \D(V,). (3.4)

Now consider the value function of a firm whose worker has a contract with a remaining
value, V(t). Let J(V(t)) denote this firm’s value.” Because the worker quits at rate
AMp(F(V(t))) and dies at rate 8, then

J(V (1)) = [+ Mp(E(V ()] J(V (1) — y +w(V (1), (3.5)

where J denotes the derivative with respect to ¢ rather than V. This equation has embodied
the aforementioned assumptions that a firm commits to the contract and that it does not

respond to the employee’s outside offers.

8The worker can also choose to quit the job to become unemployed if the wage profile is sufficiently
decreasing. However, this event will never occur in the equilibrium, because the optimal wage profile has
increasing wages with tenure, as shown later.

9Strictly speaking, the firm’s value at any given tenure ¢ depends on the remaining contract, {V (7)},>t,
not just on V'(¢). However, given V(t), the (maximized) value of the firm under an optimal contract that
delivers the value V(t) to the worker is a function of V(¢) alone. In order to economize on the notation, I
treat J as the maximized value of the firm.
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For dynamic optimization, let me express J as a discounted sum of profits by integrating
(3.5). Since the contracts are expressed in terms of V, it is convenient to use V rather

than ¢ as the integration variable. To do so, use (3.3) to express:

av
~ 8V —u(w(V)) = MD(V)
Substituting into (3.5), I obtain a differential equation of J(V'). To integrate this equation,
let ¢, be an arbitrary point in [0,¢] and let V, = V(¢,). Let v (V (¢),V,) be the probability

that a match will survive to tenure t conditional on that it has survived to tenure ¢,.

dt

(3.6)

Because the separation rate at any given value V' is [6 + Ap(F(V))], then

v(V,V,) = exp {— /Va 5 —5u—(i_w)87€§§:1£n;)1)D(m) dm| , (3.7)

where I have used (3.6) to substitute dt. Equivalently, 7 is given by the solution to the
following differential equation:

b+ p(F(V)] vV, Va)
5V —u(w(V)) — MD(V)’

ViVe) = (3.8)

W’Y (
where the terminal conditions are v (V,,V,) = 1 and v(V,V,) = 0 for all V, < V. Because

J is bounded, it satisfies the transversality condition: limy_ ¢ J(V)y(V,V,) = 0 for all
V, < V. Integrating (3.5) with respect to V yields:

Y = w()] vV, V)
10 = |, 7St

For any V,, this value is determined by the contract remaining at tenure t,.

3.3. Optimal Recruiting Decisions and Contracts

A firm’s recruiting decision contains two parts. The first part is to choose an offer V(0)
to maximize the expected value of recruiting, ¢(V(0))J(V(0)), taking the function ¢(.) as
given. The second part is to choose a contract {w(V)}g:V(O) to deliver the value V'(0) and
to maximize J(V'(0)). For the first part, there is a continuum of values that are optimal
offers. A high offer attracts more applicants and increases the firm’s chance of filling the
vacancy, but the ex post profit and value are lower. A low offer yields higher ex post profit
and value for the firm, but the chance of filling the vacancy is lower. Different offers in the
equilibrium yield the same expected value to a recruiting firm.

For the second part of the decisions, an optimal contract, {w(V)}g:V(O), solves:

(P) max J(V(0)), given V (0).
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Use the notation Vy = V(0). Treat v(V, V4) as an auxiliary state variable and (3.8) as its
law of motion. Let A be the shadow price of v. The Hamiltonian of (P) is:

Cy—wlV) = A+ Mp(F(V))]

Following a similar argument to that in BC, it can be shown that the assumption u(0) =
—oo implies w(V(t)) > 0 for almost all ¢ in all optimal contracts.'® In Appendix B, I show
that the optimality conditions of the Hamiltonian problem yield: A = J and
JVy=——1__ o (3.9)
u'(w(V))

Optimal contracts have three important properties. First, all optimal contracts provide
optimal sharing of the value between a firm and its worker, as described by (3.9). That is,
the amount of wage increase that is needed to increase the worker’s utility by a marginal
unit must be equal to the reduction in the firm’s profit. Note that (3.9) can be written
equivalently as —J = V/ u'(w). For the analysis later, it is useful to substitute V from

(3.3) and J from (3.5) to rewrite this equation as:
u(w)(y —w) + u(w) =u'(w) [6 + Mp(F(V)]J(V)+ [V — \iD(V)] . (3.10)

This equation can be directly explained by viewing a match as a joint asset. The left-hand
side of the equation measures the flow of “dividends” of the asset, which consists of the
firm’s profit, evaluated with the worker’s marginal utility, and the worker’s utility. The
right-hand side is the “permanent income” in utils generated by the asset. In particular, the
permanent income to the firm is [6 + A1 p(F')]J, which is translated into units of utility with
the marginal utility of the worker. The permanent income to the worker is [0V — A\ D(V)].
The optimal contract requires that the flow of dividends to the joint asset should be equal
to the permanent income of the asset.

Second, wages increase with tenure in all optimal contracts. This feature and the

bounds on wages are stated as follows (see Appendix B for a proof):

Lemma 3.2. For all V(t) < V, wages in an optimal contract satisfy:

(VD) _ [V, dp(F(V))] .

dt ' (w(V)) V) l av
Moreover, W =y — 6k/qg <y, V =u(w)/§, J(V) =k/q >0, and q(V) = q (< 00).

10Tt can be shown that the program (P) is concave in terms of Géteaux derivatives in a neighbor-
hood of the optimal contract, and so the optimum is characterized by the optimality conditions. See
http://www.chass.utoronto.ca/ shouyong/shil /dcontractsup.pdf.
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There are two forces that make an optimal wage profile increase smoothly with tenure.
The first is a firm’s incentive to retain a worker by backloading wages, which appears
in (3.11) through the feature dp(F'(V'))/dV < 0; the second force is risk aversion, which
appears in (3.11) as u” < 0. These forces work as follows. Because a worker cannot commit
to the job, the firm can increase the worker’s opportunity cost of quitting by backloading
wages: as wages rise with tenure, the probability with which the employee can find a
better offer elsewhere falls, and so the worker’s quit rate falls with tenure. Thus, a rising
wage profile is less costly to the firm than a constant wage profile that provides the same
expected value to the worker. However, if workers are risk neutral, then the best way for
a firm to backload wages is to offer zero wage initially with a promised jump in wages in
the future (see Stevens, 2004). Because this jump is not desirable for risk averse workers,
the optimal contract has smoothly increasing wages over tenure. To induce a risk-averse
worker to accept the increasing wage profile, rather than a flat wage, the firm can give the
worker part of the gains from a lower quit rate in the form of a higher offer.

Because wages are increasing with tenure and bounded above, wages in all optimal
contracts increase toward the upper bound w as ¢ — oo. Accordingly, the value for an
employed worker converges to V. This convergence in the value is monotonic, as I will
show later in Corollary 5.3. As a result, a firm’s value falls with tenure.

The third property is that all optimal contracts are sections of a baseline contract but
with different initial values or wages. More precisely, denoting the baseline contract as

{Vs(t)}52,, then the entire set of optimal contracts is:
H{V ()} : V(t) = Vi(t + s) for all ¢, where s € [0,00)} .

That is, relative to the baseline contract, any other optimal contract amounts effectively
to crediting the worker with a length of tenure at the start of the contract and, hence,
with a higher initial value (or wage). From this initial value, the contract traces out the
remaining section of the baseline contract.!!

The above property follows from the principle of dynamic optimality. To explain why,
compare the baseline contract with another contract ¢ given by {V.(¢)}2,, with V,(0) >
V5(0). Because the values in both contracts increase with tenure toward V, there exists a
time s such that Vj(s) = V.(0). If contract c is optimal for delivering the value V.(0) but if

it is not the same as the section of the baseline contract from that value onward, the firm

1Tt is worth repeating that an offer with a higher value is not necessarily more attractive to an applicant,
because the probability of obtaining the offer is lower. A worker’s optimal target of application is unique,
given the remaining value of his current contract.
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that offers the baseline contract can replace the remaining part of the contract from Vj(s)
onward by contract ¢, with V4(t) = V.(t — s) for all ¢ > s. This change will increase the
firm’s expected value, which contradicts the optimality of the baseline contract.

From now on, I focus on the baseline contract and suppress the subscript b. Thus, V(t)
denotes the remaining value of the baseline contract at tenure ¢, and w(V') denotes the
wage level at the point where the remaining value of the baseline contract is V.

With the above property, characterizing the set of equilibrium offers is equivalent to
tracing out the baseline contract over tenure. Precisely, the set of equilibrium offers,
denoted as V, is V = {V (t) : t > 0}. Denote the inverse function of V' (t) as T'(V); that is,

T(V(t)) =t forallt>D0. (3.12)

T'(x) records the length of tenure required for a worker to increase the value from V' (0) to
x according to the baseline contract. Clearly, 7"(V) = dt/dV, which is given by (3.6).

4. Configuration and Definition of the Equilibrium

To illustrate the configuration of the equilibrium, denote:
vo =V, and v; = FW(vg), j=1,2,..., (4.1)

where F©(vg) = vy and F(vg) = F(FU~Y(vy)). The set of offers in the equilibrium is
V = [V(0),V]. Note that V (0) = v; and V (00) = V. Because only unemployed applicants
apply to vy, then v; = F(V,). Moreover, note that F(V,) >V, =V + X\D(V,)/6 > V.
Thus, v; = F(V,) >V, which shows that V is a strict subset of [V, V].

Figure 2 depicts the career paths of some workers in the equilibrium. There are workers
employed at every value in the interval [vy, V]. Take a worker who is employed at value
vj, where j > 1. The worker applies only to v;;;. If he gets the new job, the jump in the
value is depicted by the arched arrow from v; to v;y1. If the worker does not get the new
job, the worker’s contract provides smooth increases in the value, which are depicted by
the horizontal arrows. After the value has increased, say to v; + a, the worker updates the
target of the application to F'(v; + a). This process continues until death. Therefore, the
value for a worker increases over time as a result of both the jumps created by successful
applications and the smooth increases provided by the contracts.

If on-the-job search were prohibited, only one value, v, would be offered in the equi-
librium, as in most models of directed search cited in the introduction. If wages were

restricted to be constant over tenure, then workers would be employed only in a discrete
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set {v1, vy, ..., V} because there would be no increase in values to fill the gap between two
adjacent levels. Such a model is analyzed by Delacroix and Shi (2006). By filling the
gaps, wage-tenure contracts generate an interval of equilibrium offers. Thus, wage-tenure
contracts are useful for a directed search model to generate a continuous distribution of

wages among homogeneous workers, as well as the wage-tenure relationship.

unemployed employed workers
Vo V4 Vs V3 vV
/"~ :unemployed search; 7~ ™x :on the job search

: wage increases with tenure according to contracts

Figure 2. Career paths of some workers

Let n be the fraction of employed workers and G the cumulative distribution function
of employed workers over values. As said earlier, wages and values refer to the baseline
contract. An equilibrium is a set of offers, V = {V (t) : t > 0}, a Poisson rate of employ-
ment, p(.), an application strategy, F'(.), a value function J(.), a wage function w(.), and

the distribution of workers, (G, n), that satisfy the following requirements:

(i) F(V) solves (3.1), given p(.);
(ii) Given F'(.) and p(.), each offer V' € V is delivered by a contract that solves
(

P) with the starting value V', and the resulting value function of the firm is

J(V);

(iii) Zero expected profit of recruiting: ¢(V)J(V) = k for all V € [V, V], and
q(V)J(V) < k otherwise, where ¢(V) = M~ (p(V));

(iv) G and n are stationary.

Most elements of this definition are self-explanatory, except (iii). This requirement asks
the function q(V) to induce zero expected profit of recruiting for all V' € [V, V]. Because
V is a strict subset of [V, V], this requirement imposes a restriction on beliefs out of the
equilibrium. The reason for imposing this restriction is as follows. For a non-equilibrium

value V' ¢ V), there can be two different reasons why the value is not in the equilibrium
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set. One is the self-fulfilling expectation that no worker will apply to that value: This
expectation induces firms not to offer that value, in which case no worker will apply to
that value, indeed. The second reason is that, even after firms offer that value, workers still
find it optimal not to apply to it. The first reason for a “missing market” may not be robust
to trembling that exogenously puts some recruiting firms at the value V. Requirement (iii)
excludes such non-robust equilibria and, hence, refines the set of equilibria.!?
Requirement (iii) determines the hiring rate function and, hence, the employment rate
function. For given J(.), the requirement yields ¢(V') = k/J(V'), and so p(V') = M (k/J(V))
for all V € [V, V]. For all V > V| (iii) requires that a firm recruiting at V' should make an

expected loss. This part of the requirement is always satisfied, because Lemma 3.2 implies

q(V)J(V) <qJ(V) <qJ(V) = k.

The above equilibrium definition differs substantially from that in undirected search
models, such as Burdett and Mortensen (1998) and BC. As said earlier, a crucial difference
is that the application decisions must be optimal in directed search models, while they are
random in undirected search models. An important implication of the equilibrium is that
the distributions of offers and workers in directed search models play no role in determining
individuals’ decisions, equilibrium contracts and employed workers’ job-to-job transition
rates. In particular, parts (i) — (iii) in the above definition, which determine individuals’
optimal decisions and equilibrium functions p(.) and ¢(.), do not involve the distributions.

The explanation for why the distributions do not “matter” under directed search is
that the workers who apply to any given offer V' and the firms that recruit at V' form a
submarket endogenously. That is, only the workers who are currently at the value F~(V)
will apply to the offer V. Different submarkets are connected through the function p(.) or
q(.), which is pinned down by the free-entry condition of firms without any reference to the
distributions. To illustrate this feature of the equilibrium explicitly, I depict the fixed-point
problem of the equilibrium in Figure 3. Given a hiring rate function ¢(.), consistency with
the matching function yields the employment rate function p(.). Knowing the function
p(.) is sufficient for the workers to choose the target of optimal application, F'(.). These
functions, p(V') and F(V'), together determine the quit rate of a worker who is employed at

12Similar refinements have been used in directed search models, e.g., Acemoglu and Shimer (1999b)
and Delacroix and Shi (2006). In Delacroix and Shi, the refinement restricts the applicants’, rather than
firms’, expected payoff off the equilibrium path. It requires a worker’s expected surplus from applying
to every offer (including a non-equilibrium offer) to be the same. In an environment with homogeneous
workers, this alternative restriction achieves the same purpose as requirement (iii) does. However, when
the applicants are heterogeneous as in the current model, the alternative restriction is not useful because
it is not possible to find one function p(.) that induces all applicants to be indifferent between equilibrium
and non-equilibrium offers.
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any given value V. For a firm that employs a worker at V', the quit rate summarizes all the
effects of competition on the firm’s expected stream of profit. Thus, given the quit rate,
the firm can calculate the expected value under any wage contract and choose the contract
optimally. This determines the wage function, w(V'), and the firm’s value function, J(V').
Finally, the free-entry condition ties the loop by determining the hiring rate function ¢(.)
which, in the equilibrium, must be the same as the one the process started with. In this

process, the distributions of offers and workers play no role.'?

matching optimal

hiring function employ. application

rate: q(V)|————|rate: p(V)

target:

| F(V)

optimal
free entry contracts .
. w(V) quit rate:
condition
o) =< 1A p(F(V))

Figure 3. The fixed-point problem

In contrast, models of undirected search do not possess the above independence of con-
tracts and job-to-job transitions on the distributions. First of all, since workers randomly
apply to offers in undirected search models, a worker quits his current job whenever he
receives a better offer. Hence, the quit rate is a function of the distribution of offers. Sec-
ond, a firm’s hiring rate is a function of the distribution of workers because all the workers
whose current values are less than the firm’s offer will accept the offer. Thus, the distri-
butions of offers and workers play critical roles in individuals’ decisions and equilibrium
contracts. In turn, these decisions and contracts affect the flows of workers which deter-
mine the distribution of workers through a non-linear partial differential equation. The
two-way dependence makes it difficult to characterize an equilibrium in undirected search
models, especially when there are shocks to the economy.

Therefore, directed search simplifies the characterization of the equilibrium drastically.

13If the number of firms is fixed, rather than being determined by free entry, then the expected value of
recruiting is endogenous and depends on the distribution of workers. Even in this case, the distribution
plays only a limited role because it affects individuals’ decisions and the functions p(.) and ¢(.) entirely
through the expected value of recruiting.
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In the next section, I will determine the equilibrium functions, p(.), ¢q(.), w(.) and J(.).

Then, section 6 will solve for the distribution of workers.

5. Equilibrium Matching Rates and the Wage Function

To determine the equilibrium functions, p(.), ¢(.), w(.) and J(.), I formalize the fixed-point
problem depicted in Figure 3. Although the process can start anywhere in the loop, it
is convenient to organize the analysis around the wage function, w(V'). The following
procedure develops a mapping on w and obtains (p, J, F).

Start with an arbitrary function w(.) and add the subscript w to other functions con-
structed with this given function. First, I integrate (3.9) and use J(V) = k/q to get:

Voo
Ju(V) = k/q+ /V et (5.1)

Second, the zero-profit condition for recruiting yields ¢, (V') = k/J,(V') and, hence,

pu(V) =M (ﬁ‘/)) : (5.2)

Third, using p, (V') as the employment rate, I can express an applicant’s optimal decision
as f = F,(V) and the expected gain as D,,(V).

Fourth, T explore (3.10) to obtain a mapping on w. Treat w on the left-hand side of
(3.10) as a variable but substitute the given function w(V') for w on the right-hand side.

To avoid confusion, use w; instead of w on the left-hand side. Then,
w(wy) + v (wy)(y — wr) = ' (wWV)) [6 + Mpw(Fu(V)] Ju(V) + 6V =MDy (V).  (5.3)

Denote the solution for wy as wy (V) = (Yw)(V). Equilibrium wage function, w(V), is a
fixed point of 9. That is, w(V) = (w)(V) for all V. This fixed point is independent of
the distribution of workers. So are the functions p(.), q(.), J(.) and F(.).

To characterize the fixed point for w, let me specify the bounds on various functions.
First, using the constant w to replace the function w(V) in (5.1) and (5.2), I obtain
Jz(V) and pg(V). Because J,,(.) and p,(.) are monotone in w, then J,,(V) < Jz(V) and
Pw(V) < pg(V) for all V. Second, define

q= k/Js(V). (5.4)

Since Jz(V) is decreasing in V, ¢ € (0,q) and ¢(V') € [g,q] for all V. This lower bound on
q is the one used in Assumption 2. Similarly, p(V') is bounded in [0, M(g)]. Third, let w

be a strictly positive number that is sufficiently close to 0.
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Assumption 3. Assume that b, V and w satisfy:

0<)b<w=1y—06k/q, (5.5)
Jo(V) [6 + Mpa(V)] <, (5.6)
u(w) + ' (w) [y — w — Ja(V)(6 + Mpa(V))] = u(b). (5.7)

The condition (5.5) is necessary for there to be any worker employed. (5.6) and (5.7)
are sufficient conditions to ensure that yYw(V) > w for all V, given that w(V) > w. The
condition (5.6) requires that the permanent income of a job to a firm be less than output
even when the firm is providing the lowest value to the worker. Because Jz(V') and pg (V)
are decreasing functions and because V is an increasing function of b, (5.6) puts a lower
bound on b. This lower bound is strictly lower than w because (5.6) is satisfied when b = w.
(5.7) imposes an upper bound on w. Because w can be chosen to be sufficiently close to 0
and because b > 0, a sufficient condition for (5.7) is:

li% [u(w) + u'(w)(a —w)] = oo for all a > 0.

This sufficient condition is satisfied by the example u(w) = (w'™" — 1) /(1 —n) with n > 1.
Define

Q= {wV):w(V) € w,w] for all V; w(V) = w;
and w(V') is continuous and (weakly) increasing} ,

Q' = {w e Q:w(V) is strictly increasing for all V < V'} .

I establish that a fixed point of ¢ exists in 2 and then show that it lies in the subset V.
First, the following lemma holds (see Appendix B for a proof):

Lemma 5.1. For any w € 2, J, (V) defined by (5.1) is strictly positive, bounded, strictly
decreasing and continuously differentiable for all V. The function p,, (V') defined by (5.2)
indeed has all the properties stated in Claim 1.

Because p,, (V') has all the properties in Claim 1, parts (i) - (iv) of Lemma 3.1 hold. In
particular, there is a unique and interior solution to (3.1), F,,(V'), which is continuous and
strictly increasing for all V' < V. Moreover, D’ (V) = —p,(F,(V)) < 0.

Theorem 5.2. Maintain Assumptions 1, 2 and 3. Assume that the image of ¢ is compact.
Then, the mapping v has a fixed point w* € €. The implied functions J,«(V') and py (V)

are strictly concave, in addition to the properties stated in Lemma 5.1.
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Proof. See Appendix C.

This theorem implies the central properties of wage-tenure and wage-quit relationships.
First, wages and values increase with tenure. Second, because p(.) is decreasing and F(.)
is increasing, the quit rate of a worker decreases with tenure and wages. The theorem does
not claim that the equilibrium is unique or that the mapping v is a contraction. However,
in the numerical example in section 7, the equilibrium is unique.

In the remainder of this paper, I will suppress the asterisk on the fixed point and
the subscript w* on the equilibrium functions J, p, F' and D. Moreover, I will focus on
wage profiles that are smooth over tenure. The following corollary describes the additional

properties generated by smooth wage profiles (see Appendix D for a proof):

Corollary 5.3. Ifw(V(t)) is a smooth function, i.e., if |w(V (t))| < oo for all t, then w(V')
is differentiable, with 0 < w'(V') < oo for all V.. Moreover, the following results hold for
all V. < V: (i) the derivatives J"(V), p"(V) and F'(V) exist and are finite; (i) V and J
both exist, with V > 0 and J(V) < 0.

To conclude this section, let me compare wages with unemployment benefits. To do
so, let B(V) be the benefit that achieves the value V' for an unemployed worker. For any
given V| B (V) is the solution for b in (3.4) where V,, is replaced with V. That is,

B(V) =u' (8V = \eD(V)). (5.8)

Since D'(V) < 0, then B'(V) > 0. Moreover, B(V) = w. The following corollary follows
from (3.3) and the feature V > 0 for all V < V (the proof is omitted):

Corollary 5.4. w(V) = B(V). If \o < Ay, then w(V) < B(V) for all V € [v;, V).

The novel part of this corollary is the case A\g = A;. In this case, an unemployed worker
has the same access to jobs as an employed worker, but the unemployment benefit must
be higher than the wage in order for an unemployed worker to achieve the same value V'
as an employed worker. If the unemployment benefit is the same as (or lower than) an
employed worker’s wage, the present value for the unemployed worker is lower than that
for the employed worker. The reason is that an employed worker enjoys the prospect of
rising wages over tenure while an unemployed worker’s benefit does not change over time.

If an unemployed worker wants to achieve the same value as an employed worker, this
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disadvantage of an unemployed worker must be compensated by a higher unemployment

benefit. The result may hold even for some \g > ;.14

6. Equilibrium Distribution of Workers

Now let me turn to the distribution of workers. Recall that n is the fraction of employed
workers and G is the cumulative distribution function of employed workers. Let g be the
density function corresponding to GG. Note that this distribution is over values. Once this
distribution is determined, the distribution of employed workers over wages can be deduced
from G, (w(V)) = G(V), with a density function g, (w) = g(V')/w'(V).

To determine the distribution, let me examine the group of workers who are employed
at values less than or equal to V, where V € [v1, V]. The measure of this group is nG (V).
There is only one inflow into this group, which is the flow of workers from unemploy-
ment into employment at the value v;. In a small interval of time, dt, this inflow is
Ao (1 —n) p(v1)dt. There are three flows out of the described group. First, the workers in
the group may die, the flow of which is énG (V') dt. Second, for the workers whose values lie
in (V —Vdt, V], their contracts increase their values above V" after the length of time (dt).
The measure of this outflow is n[G (V) — G(V — Vdt)]. Third, some workers in the group
quit for offers whose values are higher than V. These quitters are currently employed in
(F~Y(V),V]if F~Y(V) > vy, and in (vy, V] if F71 (V) < v;. Thus, quitting generates the

following measure of outflow from the described group:

(dt) Aln/ p(F (2))dG (z).

max{v1,F~1(V)}

For the distribution of employed workers to be stationary, the flow of workers into the
described group must be equal to the sum of the outflows. Imposing this requirement,

re-arranging terms and taking the limit dt | 0, I have:

G(V)—G(V—-Vdt)

hmdtw - a . (61)

= N=Ep(v) —6G (V) — X\ fmax{vl,F—l(V)} p(F(2))dG(z).

To solve for the distribution, partition the support of G into subintervals [v;, vj11),
where v; is defined by (4.1). Add a subscript j to g(V) and G(V) for V € [vj,v,41). 1
prove the following theorem in Appendix E:

H1f X9 < A1, then an unemployed worker has a more difficult access to jobs than an employed worker.
This additional reason for B(V') > w(V) is discussed in Burdett and Mortensen (1998).
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Theorem 6.1. The fraction of employed workers is:

Aop(v1)

~ 5+ Aop(vr)° o2

The distribution of employed workers is continuous for all V', with G(v;) = 0. The density

function is continuous and, for all V' # vy, g(V') is differentiable. Moreover, g satisfies:

g(VIV =611 - G(V)] - X / p(F(2))dG(2). (6.3)

max{vi,F~1(V)}

With V(0) = vy, T in (3.12) and v in (3.7), g can be solved piece-wise as follows:

g (V)V =6y (V,u1), (6.4)

g (V)V — g;(v))i7(V, v5)
= M [, 1V 2)p(2)g;-1 (F7H(2))dF ' (2)

where (6.5) holds for j > 2. Moreover, g;(v;) = limy,,; g;—1(V') for all j.

The above theorem documents a few features of the equilibrium distribution of employed
workers. First, the distribution is non-degenerate and continuous, despite the fact that all
workers and all matches are identical. This feature is remarkable because it is not possessed
by previous models of directed search. As mentioned in the introduction, previous models of
directed search can only produce a small number of equilibrium wages among homogeneous
workers, and this number is often one. On the other hand, the model of undirected search
by Burdett and Mortensen (1998) can generate a continuous distribution of values or wages,
but the distribution becomes degenerate once every worker can observe two or more offers
before search. In my model, each searching worker observes all offers before application.
Yet, the equilibrium features a continuous distribution of employed values or wages among
homogeneous workers.

On-the-job search is the cause of wage dispersion in this model and it exerts two forces
on wages. First, by itself, on-the-job search produces the jumps in wages and produces
a wage ladder among homogeneous workers. That is, a worker who gets a job earlier
will search for a better job than a worker who gets the same job later. Second, workers’
search on the job induces firms to provide wage-tenure contracts which create further
dispersion among workers’ wages. Note that it is wage-tenure contracts that make the
wage distribution continuous, because they fill in the gap between two adjacent rungs of

the wage ladder created by the direct effect of on-the-job search.
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Second, there is no mass at the lowest value of employment, since G(vy) = 0. This
feature is remarkable because there is a positive mass of unemployed workers who apply
only to v;. Despite this concentration of applications, there is no build-up of workers at
v1. All the workers who are employed at v; will only stay at v; for a very short length of
time. Some of them will quit for better jobs or die, while the rest of them will experience
wage increases according to the contracts. Thus, the mass of workers at vy is zero in the
stationary equilibrium. In fact, there is no mass point anywhere in the support of the
distribution. Moreover, the density function is differentiable except at V = v,.%

Third, the density function of employed workers can be computed recursively. Starting
with j = 1, one can compute g; from (6.4). Taking the limit V' 1 vq in the formula yields
g2(v2). Then, setting j = 2 in (6.5) yields go(V). Taking the limit V' T v3 in the result
yields g3(vs). Continuing this process, one can obtain g; for all j.

The following corollary describes the upper tail of the density function (see Appendix
E for a proof):

Corollary 6.2. g(V) = 0 and g,(w) = 0 if and only if ‘6 — \p(V)/F'(V | # 0. Under
this condition, the density function of employed workers is decreasing at values sufficiently
close to V or, equivalently, at wages close to . Moreover the CES matching function in
(V)/F'(V)| # 0, while the urn-ball matching
function satisfies the condition if and only if § # 6/\;.

Example 2.1 satisfies the condition,

The decreasing density function at high wages is a robust feature of the data (see Kiefer
and Neumann, 1993). Note that the condition required for g(V') = 0 in the corollary is
satisfied easily by the two matching functions in Example 2. Also note that undirected
search models with homogeneous matches produce an increasing density function (see
Burdett and Mortensen, 1998, and BC).

Directed search is able to generating a decreasing density function at high values or
wages because workers choose their applications optimally. To see why, consider a worker
with a value V with F(V) < V. This worker observes all offers. For the worker to apply to
the target value, F'(V'), rather than higher offers, higher offers must be sufficiently more
difficult to be obtained than the target value. That is, the measure of recruiting firms per
applicant must be sufficiently smaller at high values than at the target value. In particular,

at values close to the upper bound V', the measure of recruiting firms per applicant should

15T thank Guido Menzio for pointing out that the distribution is continuous at v;. The density function
may fail to be differentiable at vy because offers below vs in the interval (v, v2) do not receive applications
from employed workers, while offers above v do.
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be close to zero. In turn, as few workers apply to such high values, it is indeed optimal for
only few firms to recruit at these values. The measure of workers who succeed in obtaining
jobs at values near V is close to zero. This feature makes the density function of employed
values decreasing near the upper end of the distribution.

In contrast, undirected search models produce an increasing density function. By the
assumption of undirected search, an applicant contacts all firms with the same probability.
Relative to a low offer, a high offer increases acceptance and retention, without the negative
response on the application side that would arise if search were directed. Thus, more firms
recruit and more workers are employed at high values than at low values, resulting in
an increasing density function. To modify this unrealistic prediction, the literature of
undirected search has introduced particular distributions of heterogeneity across matches
in workers’ or firms’ characteristics (e.g., van den Berg and Ridder, 1998).

Let me illustrate more formally why the two models generate different shapes of the
upper tail of the density function. With competitive entry, both models require that a firm’s
hiring rate at any given offer V' should satisfy the zero-profit condition: ¢(V') = k/J(V).
Moreover, because the value function of a firm, J(V'), is decreasing and concave in both
models, ¢(V) is increasing and convex. However, the link between ¢(V') and the distribution
of employed workers differs between the two models. With undirected search, this link is
tight because the acceptance of a firm’s offer V' can come from any applicant whose current

value is below V. That is,

Because ¢ is convex, then GG must be convex, which implies that the density function must
be increasing. Directed search breaks this link between ¢ and G, because the firms offering
V only attract the applicants whose current value is F~! (V). In this case, the property
of the density function is determined by the applicants’ tradeoff between the offer and the
employment probability which, as explained above.'¢

One might conjecture that the density function in this model may still be increasing in
most parts of the support, despite that it decreases at values close to V. If this conjecture
were true, then the density function in this model would not be different from that in
an undirected search model, such as BC, only at such high values. Unfortunately, it is
difficult to verify or contradict this conjecture analytically. However, I will provide a
numerical example in the next section to illustrate that the conjecture is not supported.

6Tn related models of directed search, Delacroix and Shi (2006) and Galenianos and Kircher (2005) also
establish the feature that the density function of employed wages is decreasing at high wages. However,
they restrict firms’ offers to wage levels rather than wage-tenure contracts.
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7. Policy Analysis and a Numerical Example

In this section, I examine the effects of some labor market policies and then compute an
example to illustrate the equilibrium.

Consider separately the following three policies: an increase in the unemployment bene-
fit, b, an assistance to unemployed workers that increases their job application opportunity,
Ao, and a minimum-wage requirement, w > Wy,. For the minimum wage to have a non-
trivial effect, assume that it is binding in the sense that w(v;) < Wi, where w(vy) is the
starting wage in the baseline contract which delivers the lowest equilibrium value v; in
the absence of the minimum wage. The following corollary summarizes the effects of these

policies (see Appendix D for a proof):

Corollary 7.1. An increase in b, \g or the minimum wage affects the distribution of
workers and increases the lowest offer in the equilibrium, v,. Moreover, an increase in
b increases the value for unemployed workers, V,, and reduces the measure of employed
workers, n. An increase in \g increases V,, and n. The minimum wage reduces n and V.
However, the three policies do not affect the functions w(.), F'(.), p(.), q(.), J(.) and, hence,

they do not affect equilibrium contracts and an employed worker’s job-to-job transitions.

Although most of the effects of the three policies on (vq, V,,, n) are intuitive, two effects
are worth noting. First, an increase in the unemployment benefit and an assistance to
unemployed workers in finding jobs have opposite effects on employment. A higher un-
employment benefit reduces employment by making unemployed workers “picky” about
offers. An assistance to unemployed workers in finding jobs also makes them “picky”,
but it increases employment by directly increasing the flow into employment. Second, the
minimum wage reduces the value for unemployed workers, despite that it raises the target
value to which an unemployed worker applies. The explanation is that such a higher target
value is suboptimal for an unemployed worker’s application, because it does make the best
tradeoff between the offer and the employment probability.

None of the three policies has any effect on employed workers’ decisions and their job-
to-job transition rates. More precisely, supposing that the policies increase v; to 01, then
the offers in [v1,0;) are no longer equilibrium offers, but the new baseline contract is the
section of the original baseline contract that starts at ©;. Thus, conditional on a worker’s
current value (or wage), the worker’s optimal application, the wage-tenure contract and
the worker’s transition rate to another job are all independent of b, Ag and the minimum

wage. The reason for this independence is contained in Figure 3. That is, the fixed-point
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problem that determines the functions ¢(V'), p(V), F(V), J(V) and w(V) involves only
employed workers and not unemployed workers.

There are two qualifications to this independence result. First, the above policies do
affect aggregate flows of workers from one value (or wage) to another, by affecting the
distribution of workers. Second, the independence result relies on the assumption that
there is no exogenous separation into unemployment. If there were such separation, then
the value of unemployment would appear in (3.3) which determines the values for employed
workers. Through this appearance the three policies would affect equilibrium contracts and
employed workers’ job-to-job transition rates.

Despite these qualifications, the independence result in Corollary 7.1 is still interesting.
It suggests that, when search is directed, putting resources to the market related to un-
employed workers has only limited effects on wage contracts and wage mobility; the more
effective way is to directly change the aspects relevant for employed workers such as ;.
To appreciate this implication, let me contrast it with the prediction of undirected search
models, such as BC (2003). Also excluding exogenous separation into unemployment, the
BC model implies that the above policies have direct effects on equilibrium contracts and
an employed worker’s job-to-job transition. For example, an increase in the unemploy-
ment benefit reduces the probability with which a given offer will be accepted by a worker,
thereby increasing the equilibrium distribution of offers. As more firms offer high values
than before, workers quit more quickly from low-value jobs. In order to mitigate this in-
crease in quits, firms offer contracts in which wages increase more quickly with tenure than
before. An increase in )y and the imposition of a minimum-wage requirement have similar
effects on equilibrium contracts and job-to-job transition rates.

To conclude the analysis in this paper, let me compute one example. Take the urn-
ball matching function given in Example 2.1 and let the utility function be u(w) =

(w!'™™ —1) /(1 —n). The parameters are given the following values:
y=10,k=050b=21n=1G=16=01 A =1=\.

Since the example is for the purpose of illustration, these parameter values do not have
any particular significance. With these parameter values, the highest wage is w = 9.95 and
the highest value is V = 22.98. Moreover, V = u(b)/§ ~ 6.93. Set w = 1. I discretize

the interval [V, V] and compute the equilibrium. The equilibrium is unique.!” Figures 4a

17See http://www.chass.utoronto.ca/ shouyong/shil /dcontractsup.pdf for the computation procedure.
Note that the parameter values do not satisfy (5.6) and (5.7), but the equilibrium still exists.
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through 4c depict the the computed results.

w(V): wage function
10
9.5
9 B
8.5 -
8 -
7.5
7 4
6.5
6
22.8 22.85 22.9 22.95 23
V: a worker's value
Figure 4a. The wage function in equilibrium contracts
p: employment rate; g: hiring rate
1+
0.8 -
0.6 1
0.4
0.2
0 T T T 1
22.8 22.85 22.9 22.95 23
V: value of an offer

Figure 4b. Employment rates and hiring rates

Figure 4a shows the wage function in the equilibrium. The lowest equilibrium wage is
6.8, which corresponds to a value v; = 22.79. The wage function is increasing and convex,

implying that wages are increasing with tenure. Figure 4b depicts the employment rate
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and the hiring rate, both as functions of the offer value. As proven earlier, the employment
rate is a decreasing and concave function, reaching 0 at the highest value V; the hiring

function is an increasing and convex function, reaching § = 1 at the highest value V.

gw: density of wages

4 1
2 e~

T

6 6.5 7 7.5 8 8.5 9 9.5 10

W: wages

Figure 4c. The density of the distribution of wages

Figure 4c exhibits the density function of the wage distribution. The cumulative func-
tion of the wage distribution is a concave, which is not exhibited. The density function is
continuous, but discretization in the computation produces the discrete changes in Figure
4c. Note that the density function is decreasing in most parts of the support, in contrast
to the increasing function generated by undirected search models. The density function
has two sections, divided by the wage level at w(vy) = 7.822. At wages below this level,
the density function is decreasing. At wages above this level, the density function is first
increasing and then decreasing. Thus, the density function is not differentiable at (and only
at) the wage level 7.822. As explained before, the non-differentiability is caused by the
feature that offers above vy receive the applications of employed workers but offers slightly
below vy do not. To eliminate the non-differentiability, one can introduce heterogeneity in
the unemployment benefit by assuming that an unemployed worker draws the benefit from
a smooth distribution. An earlier version of this paper has introduced such heterogeneity,
and it also showed that the density function of the wage distribution can be increasing at

low levels of wages.

29



8. Conclusion

In this paper, I analyze the equilibrium in a labor market where firms offer wage-tenure
contracts to direct the search of employed and unemployed workers. All workers are iden-
tical, each applicant observes all offers and there is no coordination among individuals. I
formulate the equilibrium with directed search on the job and show that it exists. Directed
search requires that workers’ applications (as well as firms’ recruiting decisions) must be
optimal, as opposed to random in the literature of undirected search. Because individ-
uals explicitly tradeoff an offer and the matching rate at that offer, each worker chooses
a unique offer as the optimal target of the application. Hence, the applicants choose to
separate themselves by the values of their current contracts. The applicants for any given
offer and the firms that recruit at the offer form a submarket whose only connection to
other workers and firms is through an equilibrium function that describes the matching
rates associated with different offers.

The endogenous separation of workers and firms generates several implications that
are novel in comparison with undirected search. First, wage mobility is limited in the
sense that workers choose to move up on a wage ladder gradually when applying for jobs,
rather than jumping immediately to very high wages. Second, the density function of the
wage distribution is decreasing at high wages, even when all worker-firm pairs are equally
productive. Third, an increase in the unemployment benefit or the minimum wage has no
effect on an employed worker’s wage contract and his job-to-job transition rates. Finally,
equilibrium contracts and employed workers’ job-to-job transitions are independent of the
distributions of offers and workers.

While generating these novel implications, the model preserves several realistic predic-
tions of the undirected search model by BC (2003), without their stringent assumption that
each worker can observe at most one offer before applying for a job. First, wages increase
with tenure, despite that a worker’s productivity is constant over time. Increasing wages
with tenure are caused by firms’ attempt to backload wages so as to increase retention
of the worker in the presence of on-the-job search. Wage increases are smooth because
workers are risk averse and cannot borrow against their future income. Second, workers’
quit rates fall with tenure, because rising wages with tenure increase the opportunity cost
of quitting. Third, there is a continuous wage distribution among homogeneous workers,
despite the fact that search is directed.

On-the-job search is the cause of wage dispersion and it works in two ways. First, by

itself, on-the-job search produces the jumps in wages and produces a wage ladder among
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homogeneous workers. A worker who gets a job earlier will search for a better job than a
worker who gets the same job later. Second, workers’ search on the job induces firms to
provide wage-tenure contracts which create further wage dispersion. These contracts make
the wage distribution continuous, because they fill in the gap between two adjacent rungs
of the wage ladder created by the direct effect of on-the-job search.

The most striking feature of the equilibrium is the dichotomy that individuals’ deci-
sions and equilibrium contracts are independent of the distribution of workers. This feature
makes the model tractable for studying business cycles. It is useful to discuss this tractabil-
ity in comparison with undirected search models. In the latter models, the distribution is
a state variable in every individual’s decision problem. Because the distribution evolves
endogenously over business cycles, the large dimensionality of the state spaces makes the
task of determining the dynamic equilibrium analytically intractable and quantitatively
challenging. The dichotomy in my model eliminates this difficulty. Utilizing this feature,
Menzio and Shi (2007) examine the implications of on-the-job search on business cycles,

by incorporating aggregate and match-specific shocks into the model.
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Appendix

A. Proof of Lemma 3.1

The result F(V) = V is evident. Let V < V in the following proof. Temporarily denote
K(f,V) = p(f)(f —V). Because p(.) is continuous and bounded, as stated in Claim
1, K(f,V) is continuous and bounded. Thus, the maximization problem in (3.1) has a
solution. Since all interior values of f yield K(f,V) > 0, while the choices at the corners
yield K(V,V) =0 = K(V,V) (because p(V) = 0), then the solution is interior. To show
that the solution is unique, I show that K (f, V) is strictly concave in f for all f € (V,V).
To do so, let @ € (0,1). Let f; and fy be two arbitrary interior values with fo > f; > V.
Denote f, = afi + (1 — a)fa. Then,

K(fa,V) =p(fa)la(fi=V)+ (1 =a)(fo=V)]
> [ap(fi) + (1 —a)p(fo)] [a(fr = V) + (1 —a)(fo = V)]
=aK(fi,V)+ (1 - a)K(fe, V) +a(l —a)[p(fi) —p(fo)llf2 — fi]
>aK(f1,V)+ (1 —a)K(f, V).

The two equalities come from rewriting, the first inequality from concavity of p, and the
last inequality from the feature that p(f) is strictly decreasing. Thus, K(f, V) is strictly
concave in f, which establishes part (i) of the Lemma.

For part (ii), uniqueness of the solution implies that F'(.) is continuous by the Theorem
of the Maximum. To show that D(.) is differentiable, let V; and V5 be two arbitrary values
with Vi < Vo < V. Express F; = F(V;) for i = 1,2. Uniqueness of the solution implies
K(F, Vi) > K(F,, V1) and K(Fy,V3) > K(Fy,V3). Thus,

D(V3) = D(V1) > K(Fy, Vo) = K(F1, Vi) = —p(F1)(Va = VA);

D(Va) — D(Vi) < K(Fy, Vo) — K(Fy, V1) = —p(F2)(Va — VA).

Divide the two inequalities by (V2 — Vj) and take the limit V5 — V. Because F(.) is
continuous, the limits show that D(V) is differentiable at V; and that D'(V}) = —p(F}).
Since V; is arbitrary, this argument establishes part (ii).

For part (iii), again take two arbitrary values Vi and Vs, with V; < Vo < V. Then,
P(Fy)(Fy — Vi) < p(Fy)(F: — Vi) for j # i. T have:

0 > [p(Fy)(Fy — Vi) — p(F1)(Fy — Vi)] + [p(F1) (Fy — Va) — p(F2) (Fy — V3))]
= p(F2)(Va = Vi) + p(F1) (Vi = V) = [p(Fy) — p(F1)](Va — V).

This result implies p(F2) < p(Fy). Because p(.) is strictly decreasing, F'(V3) > F(V).

For part (iv), note that differentiability of p implies that F'(V') is given by the first-order
condition, (3.2). Also, because p is concave and decreasing, the following inequalities hold
for all V; and V5 with Vo > Vi

p(F1) > p(F) — p'(F1) (F> — Fy),
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where F; = F(V}), i = 1,2. Substituting this inequality into (3.2) yields:

p (F1) —p' (Fy)
P (F)p (F)

This implies (Fy — Fy) / (Vo — V) < 1/2 for all V; # Vi, and so F' is Lipschitz.
Finally, for part (v), if p is twice differentiable, then differentiating the first-order

condition generates the derivative F”(V'), and the above Lipschitz property yields F'(V') <
1/2. In this case, D"(V) = —p/(F(V))F'(V). QED

Vo—WVi>2(F,— Fy) +p(F)

>2(Fy— F)).

B. Proofs of Lemmas 3.2 and 5.1

[ first derive the optimality conditions of the problem (P) and the condition (3.11). From
the Hamiltonian of the problem (P), the optimality condition for v is H/y = —dA/dV and
the optimality condition for w (V') is H/y = 1/u/(w(V)). Integrating the condition for
yields A = J(V'), which implies H/y = —J'(V). Substituting into the condition for w(V)
yields (3.9). To derive (3.11), use the definition of the Hamiltonian and the optimality
condition for w to solve:

1 OV —u(w(V)) — M D(V)

A= ey |4 W) - w(w(V))

Differentiating this equation with respect to V' and substituting the result dA/dV = —1/u/,
one obtains an expression for w'(V). Substituting this expression and (3.3) into w =
w'(V)V yields (3.11).

Next, I prove the rest of Lemma 3.2. By Claim 1 and Lemma 3.1, p'(F(V)) < 0 and
F'(V) >0 for all V < V. Because J(V) > 0 for all V, as shown later, then (3.11) implies
w(V(t)) > 0 for all V(t) < V. Because V is the highest value offered, then p(F(V)) = 0
and V =0at V =V. Then D(V) =0, and (3.3) implies V = u(w)/6. Similarly, because
J(V) =0, (3.5) implies J(V) = (y — @) /6. Because recruiting at @ should yield zero net

profit, q(V)J(V) = k; that is, w = y — 6k/q(V). If ¢(V) = ¢, then the stated expressions
for w and J(V') follow. Since § < co by Assumption 2, then @ < y and J(V) > 0.

To show q(V') = g, suppose that q(V) = ¢ — a to the contrary, where a > 0. Because
qV)J(V) =k > 0and J(V) = (y — w)/6, then w = y — 6k/(q — a). Consider a firm
that deviates from w to w + &, where ¢ > 0, which generates a value for a worker as
V = u(w + ¢)/6. Because the firm is the only one that offers a wage higher than w, the
workers who are employed at w will all apply to this firm, which yields q(V) = q. The
firm’s expected value of recruiting is q(V)J(V) = (y — @ — €)G/8, which exceeds k for
sufficiently small ¢ > 0. This result contradicts the fact that V is an equilibrium value.
Thus, q(V) = . This completes the proof of Lemma 3.2.

Now, turn to Lemma 5.1. Let w(V) be an arbitrary function in 2. It is easy to
verify that J,(V) defined by (5.1) is strictly positive, bounded, strictly decreasing and
continuously differentiable, with J'(V') = —1/u/(w(V)) < 0. Because w(V') is increasing,
then J'(V) is decreasing and J(V') is (weakly) concave. Moreover, J,(V') = k/g. Similarly,

33



pw(V) defined by (5.2) is bounded and continuous for all V' (including V' = V), with
pw(V) = M(q) =0. For all V < V| p,(V) is differentiable and strictly decreasing because

k 1
W= (ML) ——— <0
)= () e <O
where the argument of M’ is k/J, (V) and where M’ < 0 under Assumption 2. Moreover,
for any given value V/,

d k k k
SN (5 VAl LR (RN VDT VA
de( Ji) JS;( 7 )—0’

where the inequality follows from part (iii) of Assumption 2. Because J, (V') is decreasing
and M’ < 0, the function M'k/J, (V) is decreasing in V. Because 1/u/(w(V)) is increasing
in V and M’ <0, then p! (V) is decreasing. That is, p,, (V) is (weakly) concave. QED

C. Proof of Theorem 5.2

The sets Q and Q' are defined prior to Lemma 5.1 and the mapping v is defined by
wy (V) = (yw)(V), where w; is the solution to (5.3). It can be verified that €2 is a closed
and convex set. Lemmas C.1 and C.2 below state that ¢ : 2 — €' is a continuous mapping
in the supnorm. Under the assumption that the image of v is compact, Schauder fixed
point theorem implies that v has a fixed point in 2, denoted as w*. Because w*(V) =
(Ypw*)(V) € €, then w* (V) is strictly increasing for all V' < V. This implies that J,- (V)
and p,+ (V) are strictly concave, in addition to the properties stated in Lemma 5.1.

Lemma C.1. ¢ : Q — Q' C Q.

Proof. Temporarily denote the left-hand side of (5.3) as L(w;) and the right-hand side
as R(V). Recall that w < y. Because L(w) is continuous and strictly decreasing for all
w < y, it is invertible for all w € [w,w]. Then, wi(V) = L7*(R(V)). Pick an arbitrary
w € Q. I show that wy; € €. This is done in the following steps.

First, wy (V') is continuous because J,,(.), pw(.) and F,(.) are all continuous.

Second, w; (V) is strictly increasing for all V' < V; i.e., R(V) is strictly decreasing. To
establish this result, pick arbitrary values Vi and Vs, with V. < V; < Vi, < V, and let
F, = F(V;) with i = 1,2. I show that the following (stronger) property holds:

0 < Ju(V2)S < R(V1) = R(V2) < Ju(VA1)5, (C.1)

where

S =u (w)) [6 + Mpw (F1)] — v (w(V2)) [6 + Mipw (F2)] -

Note that S > 0, because w (V') is increasing, u/(w) is strictly decreasing, p,, (F') is strictly
decreasing and F,, (V) is strictly increasing. To establish (C.1), note that J,(V) is de-
creasing and concave with derivative J/ (V) = —1/u’ (w (V')) < 0. Then,

Vo= W V- Wi
W < Juw(V1) = Ju(V2) < W
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Similarly, because the function [0V — A1 D,, (V)] is increasing and concave with derivative
[6 + Aipw (F)], T have:

{6‘/2 - /\lDw(‘/Q)] B [5‘/1 - )\1Dw<‘/1>]
Vo=V

Using the first part of the above two results to substitute J,(V7) and [V} — A1 D,,(V7)] in
R(Vy), I get R(Vy) — R(Va) > J,(V2)S. Using the second part of the above two results to
substitute J,(V2) and [6Va — A\ Dy (Va))] in R(V3), T get R(Vy) — R(Va) < J,(11)S.

Third, wy (V) € [w, w] for all V, with w; (V) = w. Examine w; (V). Because w(V) = w,
then (5.3) implies:

6+ Mipw (F1) > > 64 Mpw (F5) .

Because L(w) is strictly decreasing, the above equation implies w; (V) = @. Since wy (V)
is strictly increasing for V <V, then w; (V) < w for all V < V.

Finally, I show w; (V) > w. Since L'(w) < 0, wy (V) > w if and only if L(w) > R(V).
A sufficient condition is L(w) > R(V), because R(V) is a decreasing function. Note that
the following holds:

(W)) [6 + Mapw(Fu (V)] Ju (V) + 6V
) [0+ Apu(Fu(V))] Jw(K)+U(b)
)[04+ Mpw(V)] Ju(

) [0+ Apa (V)] Ja

The first inequality follows from the facts that w(V) > w, u(b)/6 and D, (V) > 0.
The second inequality follows from the facts that F,,(V) > V. and that p,(.) is decreasing.
To obtain the third inequality, note that J,(V) < Jz(V) and p,(V) < ps(V) for all V.
Therefore, a sufficient condition for wy (V) > w is:

I<ﬁj

L(w) > v'(w) [6 + Mpo (V)] Jo (V) + u(b).

This condition can be re-arranged as (5.7), which is assumed in the Theorem. This com-
pletes the proof of Lemma C.1.

Lemma C.2. v is continuous in the supnorm.

Proof. To show that the mapping v is continuous in the supnorm, I show that the
following holds for all w,,w, € €2 and all V:

|(Ywa) (V) = (Yw) (V)] < Alwa — ws]l, (C.2)
where the norm is the supnorm and A > 0 is a finite constant. Once this is done, then
[Ywa — || = sup [(Ywa) (V) = (Yw) (V)] < Allwa — ws],

which implies that 1 is continuous in the supnorm.
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To show (C.2), take arbitrarily w,, w, € Q and V € [V, V]. Without loss of generality,
assume wy (V') > wy(V') for the given value V. Shorten the subscript w; on J, p, F, and
D to i, where i = a,b. Also, denote the right-hand side of (5.3) with w = w;(V') as R;(V).
Because w > w > 0, Assumption 1 implies that there are positive and finite constants w;
and wy such that w; < |[u”(w)| < wsy for all w € [w, w]. Then

|L'(w)] = (y —w) [u"| > (y —0) wy = Ay
Note that A; is bounded above 0. Since L(w) is decreasing, then

[Ra(V) = Bo(V)| = [L(Ywa(V)) = L(Yws(V))] = Ar [Ypwa(V) — ws(V)] -

I show that |R,(V) — Ry(V)| < Ag ||wa — wyl| for some positive and finite Ag. Then, (C.2)
holds after defining A = Ag/A;.

To establish the desired inequality for R, suppress the given V. I have:

|Ro — Ry| = [{[u(wa) — v (wp)] Jo + v (wp)(Ja — Jp) } [0 + Aipa(FL)]
+ A/ (wy)Jy [pa(Fa) — po(£3)] — A1 [Da — D]
< [[v/(wa) — v (wp)| Jo + v/ (wp) [Ja = Jo[] [6 + Aipa(Fa)]
+)\1u’(wb)Jb |pa(Fa) —pb(Fb)| + )\1 |Da - Db| .

I find the bound on each of the absolute values in the above expression.
Because u” < 0, then

[0/ (wa) — u'(ws)| < wa — wy| max{|u(wa)| , [u” (we)|} < ws [[wa —wsl- (C.3)

By the definition of J,,

o= Bl = | e e
< va [ (wa(2)) — ' (wn(2))] dz (C.4)
wa(V=V)
i Jy lwa(2) = wy(2)] dz < Ess llwa — wil.

The coefficient of ||w, — ws|| is bounded because v/ (w) > 0 and 0 < wy < 0.

To develop bounds on [p,(Fy,) — ps(Fp)| and |D, — Dp|, let € = ||jw, — wy|| > 0 with loss
of generality. (If ||w, — wy|| = 0, then w, = wy, for all V', in which case |p,(Fy,) — pp(Fp)| =
|Dy — Dy| = ||w, — wpl|; these provide the required bounds.) I examine two cases sepa-
rately: the case where V is close to V and the case where V is away from V. The separation
is necessary because M’(q) and M"(q) might be unbounded at ¢ = q (i.e., at V = V).

Consider first the case where V is close to V. In this case, F,(V) and F(V) are close
to V. Because p, (V) is continuous at V =V, and because F(V) is continuous, then for
given € > 0, there exists ¢ > 0 such that

V-V <c=|pi(F) —p(F(V))| <e/2, forie{a,b}.
Because F;(V) =V and p;(V) = 0, the following holds for V >V — ¢:

Pa(Fa) — po(Fp)| < Ipa(Fa)lgér po(F3)] < & = |lwa — w]|, (C.5)



Do = De| < |pa(Fo)| (Fou = V) + [po(F3) | (Fy = V) < (V = V) [lwg — wy]| - (C.6)

For the last inequality, I used the facts that ]pi(Fi)]_< £/2 and that F; —V; <V —V. (C.5)
and (C.6) provide the required bounds when V' >V —c.

Now consider the case where V' < V — ¢, where ¢ > 0 is constructed above. In this

case, ¢ < ¢ and, hence, Assumption 2 implies that |M’(q)| and |M"(q)| are bounded for

q € [q,q). Because p(V) = M <%>, then

- (5 ()

dzM(k:/J) k k y ,
—ar | (Tg) (‘J—wM ‘QM)'

These absolute values are bounded above in the current case. Let A; and A3 be the upper
bounds. Define

[/ (w)]2

For any z € [V,V — ],

Pa(®) = po()| < Az[Ja(2) = Jo(2)] < Ag[lwa —wp|,

dM,  dM,
dJ, dJ,

These results lead to the following result:

< As|J, — Tl

dM, /dJg, dMy /dJ,
P () — p(x)] < |“elte _ M/

< |dMy 11 1 |am, %)
— | dJa | | v (wa) u/ (wp) u (w ) dJa dJy
< e ) () + 5t 17, )
< _As AsA3z/As

A | + Al
Suppose first that F, > Fy. If p,(F,) > py(F}p), then
0 S pa(Fa> - pb(Fb) S pa(Fa) - pb(Fa> S A4 ”wa - wbH .

The second inequality comes from the fact that p is decreasing and the last inequality from
the bound on |p, — pp| just derived. If p,(F,) < pp(F}), then

0 <py(Fp)— pa(Fa) = —pp(Fp)(Fy = V) + p(Fo) (Fa = V)
< (Fo = V) [P, (Fo) — py(F)] < (V = V) [P, (F) — py(F3)]
< [1+ As(V_V) } Au |t — ws] .

Agu/ ()

The equality follows from the first-order condition for F', the second inequality from the
supposition F, > Fp, the third inequality from the facts that p’ is a decreasing function
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and that F, — V <V — V, and the last inequality from the bound on |p], — p}|. Thus, if
Fa 2 Fb, then
A3(V - V)
AQU/(U_))
Suppose now that F, < F,. By switching the roles of I, and Fy, it can be shown that
(C.7) continues to hold. Thus, (C.7) holds for arbitrary F,(V) and Fy(V) with V <V —c.
Now let us examine |D, — D] for the case V <V —c. If D, > D, then

pa(F) — ()] < [1 " } Au e — ] . )

0 S Da - Db :pa(Fa)(Fa - V) _pb(Fb)(Fb - V)
< pa(Fa)(Fa - V) _pb(Fa)(Fa _Y>
= (Fa - V) [pa(Fa) _pb(Fa)] < (V _K)A4 Hwa - wb” :

The first equality comes from the definition of D(V'), the second inequality from the fact
that py(f)(f — V) is maximized at f = Fj, the last inequality from the bound on [p, — ps|
derived above and the fact £, — V <V — V. The same result holds if D, < D,. Thus,

|D, — Dy| < (V= V) Ay ||wg — wy| . (C.8)

Defining A5 = max{Ay4, 1} and replace Ay in (C.7) and (C.8) with As. The resulting
bounds on |p, — ps| and | D, — Dy| apply for both V">V —cand V <V — ¢. Substituting
these bounds, (C.3) and (C.4), I have:

/ A4
‘Ra - Rb‘ < { [W2Ja +u (wb)A_2:| [5 + )\1pa<Fa)]
+ M As [u/(wb) (1 + A;;g;(—g) Ty + M (V — z)} } wa — w]) -

Let Ag be the maximum value of the coefficient of ||w, — wp|| in the above expression,
taken over V € [V, V]. Then, As is bounded above. Setting A = Ag/A; establishes the
inequality (C.2), which shows that 1) is continuous in the supnorm. This completes the
proof of Lemma C.2 and, hence, of Theorem 5.2. QED

D. Proofs of Corollary 5.3 and Corollary 7.1

To prove Corollary 5.3, suppose that [w(V(t))| < oo for all ¢. If V #0, then w'(V) = w/V
exists and is finite. If V' = 0 at some value V, such as V', then §V.—u(w(V.))—A\ D(V.) = 0.
Differentiating this equation with respect to V. yields:

0+ Mp(F(V)
W (w(Ve))

w' (V) € (0,00). (D.1)
That is, w(V) is differentiable at V.. Thus, w'(V') exists and is finite for all V. From (5.1),
(5.2) and Lemma 3.1, one can then verify that J”(V), p”(V) and F'(V) all exist and are
finite for all V < V.
I still need to show that w'(V) > 0, V > 0 and J(V) < 0 in the case V < V. In this
case, F(V) < V. Lemma 3.1 implies dp(F(V))/dV < 0. The right-hand side of (3.11)
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is positive and finite, which implies w(V) > 0. Thus, w/'(V)V € (0,00) for all V < V.
Because w(V) is strictly increasing for all V < V and V is bounded (see (3.3)), then
w'(V) € (0,00) and V € (0,00) for all V < V. Finally, J(V) = J'(V)V € (0,00) for all
V < V. This completes the proof of Corollary 5.3.

To prove Corollary 7.1, note that the analysis in section 5 is independent of b, Ay and
G. Thus, the functions, w(.), p(.), q(.), J(.), F(.), and D(.) do not change with b or
Ao. Similarly, the minimum wage requirement does not affect these functions. However, all
three policies affect the distribution of workers and, in particular, affects n. The increase in
b or \g increases V,, (see (3.4)). Since v; = F(V,,), then v; increases with b and Ag. Clearly,
d[Xop(v1)]/db < 0, and so (6.2) implies that n decreases with b. Calculating dV,,/d)y from
(3.4), calculating p'(v;) from (3.2) and using the fact that 0 < F’(V,) < 1/2 in Lemma 3.1,
it can be shown that d[Aop(v1)]/dN\g > 0. Thus, (6.2) implies that n increases with Ao.

Similarly, the (binding) minimum-wage requirement increases v; and reduces n. To
show that the requirement reduces V,,, let V., be the new level of V, after the imposition of
the requirement and v; be the new level of vy, where 0; > v; and w(?01) = Wyin. Suppose
Vi, > V., to the contrary. Then,

u(b) = 6V, = Aop(01) [0 = Vo] = 6Vi = Aop(81) [B1 = V] > 6V, = A D (VL.

The equation comes from adapting (3.4) for V., the first inequality from the supposition
that V,, > V,, and the second inequality from the fact that the function p(v)(v — V) is
decreasing in v for v > v;. The above result contradicts (3.4), and so V,, < V,,. QED

E. Proofs of Theorem 6.1 and Corollary 6.2

First, I derive (6.2). Set V = V in (6.1). Because V = 0 at V = V, the left-hand side
of (6.1) is equal to 0 at V = V. Moreover, the integral in (6.1) is equal to zero, because
FY(V)=V. Thus, at V =V, (6.1) yields (6.2).

Second, I show that G is continuous; i.e., G does not have a mass point. Suppose, to the
contrary, that G has a mass m > 0 at some value V € [vy, V]. Then, G (V) —G(V —Vdt) >
m for all dt > 0, and so the left-hand side of (6.1) is equal to co. This is a contradiction,
because the right-hand side of (6.1) is bounded.

Third, the density function, g, is continuous for all V' and obeys (6.3). To establish
continuity of g, denote the derivative of G from the left-hand side of V as g (V_). The
left-hand side of (6.1) is equal to g(V_)V. Because G, F, F~' and p(.) are continuous, the
right-hand side of (6.1) is continuous in V. Thus, ¢(V_)V must be continuous. Because
V is continuous, g must be continuous. Then, I can express the left-hand side of (6.1) as
g (V) V. After substituting p(v;) from (6.2), (6.1) becomes (6.3).

Fourth, g is continuously differentiable for all V' # v,. To see this, note that F', F~! and
p(.) are continuously differentiable. Since g is continuous, G is continuously differentiable,
and so the right-hand side of (6.3) is continuously differentiable for all V' # v,. Thus, the
left-hand side of the equation, g (V') V, must be continuously differentiable for all V' # vs.
Because V is continuously differentiable, ¢ (V) is continuously differentiable for all V' # v.

39



Fifth, I derive (6.4). For V € (vy,v), F~Y(V) < vy, and so (6.3) becomes:

v
VIV =5[1-G0)) = A [ @) ()
Because G(v1) = 0 by continuity of G, taking the limit V' | v; in (E.1) leads to g (v1)0; = 6.
Differentiating (E.1) with respect to V' and using (3.8), I get:

d

av

Vg (V)

Y (Vo) | N (E2)

Note that g;(v1)01 = 6 and y(V,v1)/v(z,v1) = v(V, 2). Integrating (E.2) from v, to V
yields (6.4). Since g is continuous, taking the limit V' T vy in (6.4) gives g(v2).

Finally, I derive (6.5) by examining the case V' € [vj,v;41), where j > 2. In this case,
F~Y(V) > vy, and so (6.3) becomes

G(VIV =51 G(V)] - Ay / P(F(2))g51 (=) dz — / p(F(2))g; (2) dz. (E.3)

F-1(V) j

On the right-hand side of the equation, I have separated the two groups of applicants who
successfully obtained jobs with values above V: one coming from (F~!(V),v;] and the
other from [v;, V]. Differentiating (6.3) with respect to V' and rewriting the result, I obtain
the following equation similar to (E.2):

d

av

Vg; (V)
v (V,v1)

. Aip (V)

dF~1(V)
7 (Viw) '

av

gi-1 (FH(V)) (E4)

Integrating this equation from v; to V' yields (6.5). Because g is continuous, then g;(v;) =
limy+,; g;—1(V), all j. This completes the proof of Theorem 6.1.
Now, turn to Corollary 6.2. Because g, (w) = g(V')/w'(V) and w'(V) > 0 (see Lemma

5.3), the property of g(V') stated in the corollary implies the property of gw(w). Thus, it
suffices to establish the property of g(V'). For this purpose, examine (6.3) at V =V — ¢,
where € > 0 is a sufficiently small number. Setting V =V in (6.3), dividing the equation

by € and taking the limit ¢ — 0, I get:

o(V) lim (%wV:V) — §9(V) = Ap(V)g(V) lim {1 v r (V)] } | (E.5)

e—0 e—0 | €

To obtain the last term in the above equation, I used the Intermediate Value theorem to
compute the integral in (6.3). Compute:

1

Vg = 2 [Vey = Vo] = - (%) == - d@u(7)] =0
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The first equality comes from the fact that V = 0 at V, the second equality from sub-

stituting (3.3) and p(V) = 0, and the last equality from substituting w’(V') from (D.1).
Moreover, compute:

i {2 [0 ()]} =t 2[00 (7)) -1 = gy

The first equality comes from substituting V = V — e and V = F(V), while the second
equality comes from the fact that dF~'/dV = 1/F’. Substituting these results and the fact
p(V) = 0 into (E.5), I obtain: g(V) [6 — \ip(V))/F'(V)] = 0. Thus, g(V) = 0 if and only if
|6 = Xip(V)/F'(V)| # 0. Under this condition, continuity of g(V) implies that ¢'(V) < 0
when V is close to V.

To check when the two matching functions in Example 2.1 satisfy the required condition

for g(V) = 0, rewrite the condition as ‘6 - )xlp(V)dF;—‘l/(V)]V:V) # 0. Rewrite (3.2) as

FY (V) =V +p(V)/p (V) and differentiate it to obtain dF'~* (V') /dV. Using p(V) =
M (q(V)) and ¢(V) =k/J (V) to compute p' (V) and p” (V), I derive:
dF— (V)

M2 JJ” M2 qM//
—= =2M — 2.

With the CES matching function,

M q° M [(qM" 1—0p
qM’ 1—a’ qM’(M’ * 1—al

Because Assumption 2 requires p < 0, then g = (1 — a)l/ . In this case, the limit V — V

(i.e., ¢ — q) implies: M — 0, M" — —o0, % — 0, and —q]]‘\f[, (% + 2) — 14 p. Because

J, J' and J" are all bounded, p(V)dF~' (V) /dV — 0 as V — V. Then, the condition

required for g(V') =0 is ¢ # 0, which is satisfied.
With the urn-ball matching function,

M (G—q)In(1—q/q)

M’ (@—q)In(1-q/q) +q

M?* (qM" L q 2 2
qM’(M’ +2)_ q{[(é—Q)ln(l—Q/é)ﬂLq +(é—<1)1n(1—Q/é)}'

The limit V — V implies ¢ — g and M — 0. Then, the above two expressions approach
0 and —q, respectively, and so p (V)dF~! (V) /dV — A\q. In this example, the condition

required for g(V) =01is ¢ # 6/\. QED
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