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Abstract

This paper studies the falsifiability of two-sided matching theory when agents’
preferences are unknown. A collection of matchings is rationalizable if there
are preferences for the agents involved so that the matchings are stable. We
show that there are non-rationalizable collections of matchings; hence, the
theory is falsifiable. And we characterize the rationalizable collections of
matchings, which leads to a test of matching theory in the spirit of revealed-
preference tests of individual optimizing behavior.



1. Introduction

This paper presents results on the positive implications of two-sided matching

theory, as first developed by Gale and Shapley (1962). The existing appli-

cations of the theory have mostly dealt with normative questions of market

design. We develop the testable implications of the theory, and present re-

sults akin to the revealed preference tests of consumer theory. The tests

are formulated in abstract settings, but can be taken to real data by us-

ing identifying assumptions already employed by applied researchers, and

can hopefully serve as basis for a statistical theory of testing in matching

markets.

Two-sided matching models are described by two sets of agents (think of

workers and firms or men and women) and a preference relation for each agent

over potential partners from the opposite set. The theory studies matchings

that have the core property; the core matchings are called “stable.” Matching

models have been studied extensively since Gale and Shapley’s (1962) seminal

paper: Al Roth’s online bibliography lists close to 500 papers.

The literature has focused on the structure of stable matchings when

agents’ preferences are given. Hence, to test the theory using existing results,

one must know the agents’ preferences. We study the problem of which

matchings can be stable when agents’ preferences are unknown. Concretely,

given a collection of matchings, µ1, µ2 . . . µk, we ask if there are preferences

for the agents involved so that all these matchings are stable. When this is

the case, we say that the set of matchings is rationalizable.

The problem is important because it is often difficult to infer agents’

preferences, and it is important to understand the implications of the theory

when preferences are unobserved. One issue is that the theory may not have

testable implications—perhaps all collections of matchings can be rational-

1



ized with suitable preferences. A second issue is, if the theory has testable

implications, what are they? Can we characterize the rationalizable collec-

tions of matchings in a way that is useful for empirical work?

In this paper, we show: (1) that the theory is testable, so there are

non-rationalizable sets of matchings; and (2) we provide a series of results,

leading up to a characterization of the rationalizable sets of matchings. The

characterization is in graph-theoretic terms. A necessary condition is simply

that a certain graph has no odd cycles. A necessary and sufficient condition

is in terms of no odd cycles and a certain integral polynomial system.

We also obtain some secondary results. The first is that, if a collection

of matchings is rationalizable, then it is typically rationalizable by a large

number of different preference profiles. So matching theory is not exactly

identified, in the econometric sense of the term. Second, we consider the

problem of when purely randomly generated matchings would be rationaliz-

able. We show that the probability of rationalizing a fixed number of random

matchings remains bounded away from zero as the number of agents grows.

So in large populations, one needs large samples of matchings for the theory

to have power. Third, we discuss rationalization by an alternative solution

concept: von Neumann-Morgenstern stable sets (Ehlers, 2007).

The rest of the introduction presents a brief description of the nature of

the results, and a discussion of how the results are related to actual empirical

work on matching.

The problem of rationalizing matchings is part of a larger research pro-

gram of studying refutability in economics. This program is best known

for Samuelson’s (1947), Richter’s (1966), and Afriat’s (1967) theories of re-

vealed preference in individual decision-making. But revealed-preference the-

ory does not help in matching problems. In matching, one can think of
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the agents as choosing a partner from the opposite side of the market, but

revealed-preference theory has no bite because Agent 1 not choosing Agent 2

does not necessarily mean that 1 is revealed preferred to 2. It can also mean

that 2 prefers not to be with 1. Refutability has also been studied in general-

equilibrium theory (e.g. Brown and Matzkin (1996) and Brown and Shannon

(2000)) and non-cooperative game theory (e.g. Ledyard (1986), Sprumont

(2000), Lehrer and Rosenberg (2006), Lehrer, Rosenberg, and Shmaya (2006)

and Shmaya (2006)), but the results are, again, not useful in matching theory.

There is a distinct source of testable implications in matching theory. The

classical results on stable matchings imply a coincidence of interest within

the same side of the market, and opposition of interest across the market.

We show that, essentially, stability is characterized by a version of the co-

incidence/opposition property which holds for any pair of matchings. In

the classical results, the coincidence/opposition property holds for all agents

with respect to certain matchings, and for all pairs of matchings with respect

to certain agents. We show that there is a coincidence/opposition property

that holds for all agents in any pair of matchings; this property characterizes

stability, and it is the source of testable implications in matching theory.

The coincidence/opposition property implies that there are non-

rationalizable sets of matchings. We show that these sets must involve some

agents who are matched to the same partner in more than one matching.

For this reason, in empirical tests of the theory, it is crucial to be able to

identify some individuals in different matchings as the same agent. For ex-

ample, consider data on a cross-section of matches between buyers and sellers

of a certain good. Each match corresponds to the outcome in one market;

for example, domestic markets for a good which is not traded internation-

ally. One can then assume that firms with similar observable characteristics
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(size, technology) have the same preferences over potential buyers and are

considered to be the same by the buyers. So one treats the firms with the

same observable characteristics as identical agents (and make an analogous

assumption for the buyers).

A well-known result in matching theory is that the set of stable matchings

forms a distributive lattice (see Knuth (1976, p. 56), who attributes the result

to John Conway). Our results are related to a problem posed by Knuth on the

universe of lattices that can be stable sets of matching markets. Blair (1984)

gave the first and seemingly definitive answer to the problem. Blair proves

that, for any distributive lattice L, there are sets of men and women, and

a preference profile, so that the resulting set of stable matchings is lattice

isomorphic to L. The interpretation of Blair’s result in the literature is

that the lattice structure of the set of stable matchings has no properties

beyond distributivity. But the lattice structure of stable matchings may still

have additional properties, properties that are not shared by other lattices

of matchings. In fact, one can rewrite some of our results (see the remark

after Lemma 5) as a characterization of the matching lattices that are stable.

Our results imply that matching lattices have other properties, in addition

to distributivity.

2. Statement of the problem.

2.1. Preliminary definitions.

In this paper, we use the language of graph theory, but no results from graph

theory. A graph is a pair G = (V, E), where V is a set and E is a binary

relation on V , i.e. a subset of V ×V . The set V is called the vertex set of G,

and E is the set of edges of G. Say that G is loop-free if (v, v) /∈ E, for all

v ∈ V . Say that G is undirected if (v, v′) ∈ E implies that (v′, v) ∈ E; i.e. if
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E is a symmetric binary relation.

A path is a sequence v1, v2, . . . , vK in V with K > 1 and (vk, vk+1) ∈ E

for all k, 1 ≤ k ≤ K − 1. Say that v and v′ are connected if there is a path

v1, v2, . . . , vK with v = v1 and v′ = vK and a path v1, v2, . . . , vK with v = vK

and v′ = v1. Say that v and v′ are disconnected if they are not connected. A

connected component of G is a set C ⊆ V such that, for all v, v′ ∈ C, v and

v′ are connected. The set of all connected components of G form a partition

of V . A cycle is a path v1, v2, . . . , vK with v1 = vK .

2.2. The Model

Let M and W be disjoint, finite sets. We call men the elements of M and

women the elements of W . A matching is a function µ : M ∪W → M ∪W ∪
{∅} such that for all w ∈ W and m ∈ M ,

1. µ (w) ∈ M ∪ {∅},

2. µ (m) ∈ W ∪ {∅},

3. and m = µ (w) if and only if w = µ (m).

Denote the set of all matchings by M. The notation µ(a) = ∅ has the

interpretation that a is unmatched in µ (she/he is single). While w = µ(m)

denotes that m and w are matched in µ.

A preference relation is a linear, transitive, and antisymmetric binary re-

lation. A preference relation for a man m ∈ M , denoted P (m), is understood

to be over the set W ∪{∅}. Similarly, P (w), for w ∈ W , denotes a preference

relation over M ∪ {∅}. A preference profile is a list P of preference relations

for men and women, i.e.

P =
(
(P (m))m∈M , (P (w))w∈W

)
.
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Note that no man or woman is indifferent over two different partners; pref-

erences with this property are usually called strict.

Denote by R(m) the weak version of P (m). So w′ R(m) w if w′ = w or

w′ P (m) w. The definition of R(w) is analogous.

Fix a preference profile P . Say that a matching µ is individually rational

if, for any m and w, µ(m) R(m) ∅ and µ(w) R(w) ∅. Say that a pair (w,m)

blocks µ if w 6= µ(m), w P (m) µ(m) and m P (w) µ(w). A matching is stable

if it is individually rational and there is no pair that blocks it. Denote by

S(P ) the set of all stable matchings.

This model was first studied in Gale and Shapley (1962); see Roth and

Sotomayor (1990) for an exposition of the theory. It should be clear that one

can adapt the definition of the core as a solution for this model, and that the

set of stable matchings coincides with the core.

2.3. Statement of the problem.

Let H = {µ1, . . . µK} be a set of matchings (H ⊆M). The problem we study

is: When is there a preference profile P such that H ⊆ S(P ). We shall say

that H can be rationalized when this is the case, and that P rationalizes

H. In the introduction we relate rationalizability to actual empirical tests of

matching theory.

Note that we assume the same sets of agents are involved in each of the

matchings inH. In Echenique (2006), we discuss the consequences of relaxing

this assumption.

Assume that M and W have the same number of elements, and that

µ(m) 6= ∅ and µ(w) 6= ∅, for all m and w, and for all µ ∈ H. This assumption

is without loss of generality for the purpose of studying rationalizability. The

reason is that, if H is rationalizable, then the single agents must be the same
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for all the matchings in H (see Roth and Sotomayor (1990)) and we can

therefore ignore them and assume that the number of men and women is

the same. Note that this model allows agents to be single (as is standard in

matching theory), we are only assuming that the given matchings in H have

no single agents.

We start with two very simple motivating results. The first (Proposi-

tion 1) is that not all matchings can be rationalized, so there is potential for

refuting matching theory. The second (Proposition 2) says that the source of

refutability is quite specific: That some agents match with the same partner

in different matchings.

Proposition 1: If |M | ≥ 3, then M is not rationalizable.

Proof: Suppose, by way of contradiction, that there is P with M⊆ S(P ).

Let µM =
∨

S(P ) and µW =
∧

S(P ) be the man-optimal and women-optimal

stable matchings, respectively (Gale and Shapley, 1962). Since |M | = |W | ≥
3, there is a pair (m, w) such that m 6= µM(w) and w 6= µW (m).

Let µ′ ∈M be such that µ′(m) = µW (m) and µ′(w) = µM(w). There is a

matching µ′′ such that µ′′(m) = w. Since M⊆ S(P ), and µ′′(m) 6= µW (m),

w = µ′′(m) P (m) µW (m). Similarly, m P (w) µM(w). Then (m, w) blocks µ′.

So µ′ /∈ S(P ), which contradicts that M⊆ S(P ). 2

Proposition 2: If, for all m, µi(m) 6= µj(m) for all µi, µj ∈ H with

i 6= j, then H is rationalizable.

Proof: For each m, define P (m) by: w′ P (m) w if and only if there is

µi, µj ∈ H with µi(m) = w′, µj(m) = w and i < j; set ∅P (m)w if w 6= µ(m),

for all µ ∈ H, and order arbitrarily these w with ∅ P (m) w.
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For each w, define P (w) by: m′ P (w) m if and only if there is µi, µj ∈ H
with µi(w) = m′, µj(w) = m and i > j; set ∅ P (w) m if m 6= µ(w), for all

µ ∈ H, and order arbitrarily these w with ∅ P (m) w.

Let P be the resulting preference profile. It is clear that all matchings in

H are individually rational under P . In addition, for any (m, w) and µ ∈ H
with m 6= µ(w), w P (m) µ(m) implies that µ(w) P (w) m. So there can be no

blocking pair of µ. So H ⊆ S(P ). 2

The following example shows that the preferences constructed in the proof

of Proposition 2 do not imply H = S(P ). A rationalizing preference profile

will typically give H as a proper subset of S(P ). Example 7 presents a more

subtle instance of a H which is a proper subset of S(P ), for any rationalizing

P .1

Example 3: Let M = {m1, m2, m3, m4} and W = {w1, w2, w3, w4}. Con-

sider the matchings µ1 and µ2 defined as:

m1 m2 m3 m4

µ1 w1 w2 w3 w4

µ2 w2 w1 w4 w3 .

Then the matching that matches m1 and m2 as in µ1, and m3 and m4 as in

µ2, is also stable for the preferences constructed in the proof of Proposition 2.

Note that, in fact, there are no rationalizing preferences for which µ1 and

µ2 are the only stable matchings: the cases not covered by Proposition 2 by

re-labeling the matchings are the cases where m1 and m2 prefer one of the

two matchings while m3 and m4 prefer the other; for example m1 and m2

prefer their partner in µ1 over µ2 while m3 and m4 prefer their partner in µ2

1The question of which H satisfy H = S(P ) for some P is also interesting, but seems
to require different arguments than we have used here.
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over µ1. In that case, however, the matching described above, matching m1

and m2 as in µ1, and m3 and m4 as in µ2, is also stable.

Propositions 1 and 2 say that some collections of matchings are not ratio-

nalizable, and that failures of rationalizability arise from having some agents

match with the same partner in more than one matching. But there is too

much slack between the cases covered by Propositions 1 and 2: Everything

cannot be rationalized and matchings where all agents have unique part-

ners can be rationalized. As bounds on what can be rationalized, these are

too coarse. In the rest of the paper, we present increasingly tighter results,

building up to a characterization of the sets of matching that can be ratio-

nalized. The next section presents an example illustrating why one may fail

to rationalize a set of matchings.

3. An Illustration.

Here we present a simple example that illustrates the ideas behind the results

in the paper. Consider the following example, with four men, four women

and three matchings.

m1 m2 m3 m4

µ1 w1 w2 w3 w4

µ2 w1 w3 w4 w2

µ3 w2 w3 w1 w4

Let us construct preferences that would rationalize H = {µ1, µ2, µ3}. We

can consider all women that a man is never matched to as unacceptable.

For example, set ∅ P (m1) w3 and ∅ P (m1) w4. To do this can only help in

rationalizing H: it eliminates the need to check for blocks by agents who are
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not matched in any of the matchings in H. The issue, then, is how to specify

preferences among the men’s’ partners in µ1, µ2 and µ3.

Start with how men could rank their partners in µ1 and µ2. For m1,

the rank is trivial because µ1(m1) = µ2(m1). Next, consider m2, and let us

say (arbitrarily) that w3 = µ2(m2) P (m2) µ1(m2) = w2. Next, consider m3.

Could we have that µ1(m3) P (m3) µ2(m3)? No, because it would imply that

µ1 and µ2 cannot both be stable: (m3, w3) blocks µ2 if m3 P (w3) m2, and

(m2, w3) blocks µ1 if m2 P (w3) m3. Hence, saying that µ1(m3) P (m3) µ2(m3)

presents a problem, regardless of what we assume about P (w3). So, if we are

to rationalize H, we have that µ2(m2) P (m2) µ1(m2) implies µ2(m3) P (m3)

µ1(m3).

Suppose then that µ2(m2)P (m2)µ1(m2) and µ2(m3)P (m3)µ1(m3). Now

µ2(m3) = µ1(m4), so m3 and m4 are in the same situation as m2 and m3.

Hence µ2(m3) P (m3) µ1(m3) implies that µ2(m4) P (m4) µ1(m4), by the same

argument as in the previous paragraph. So the men m2, m3 and m4 must

agree on how they compare their partners in µ1 and µ2. Note that the result

would be the same if we had started with µ1(m2) P (m2) µ2(m2) instead of

µ2(m2) P (m2) µ1(m2).

More generally, the lattice structure on S(P ) lies behind agreement of any

two men who are related by relation “m’s partner in µ1 is m′’s partner in µ2.”

Note that µ1∨µ2, obtained by giving each men his best partner in µ1 and µ2,

in S(P ) is a matching. So µ2(m2)P (m2)µ1(m2) implies µ2(m3)P (m3)µ1(m3),

or both m2 and m3 would be assigned µ2(m2) as partner in µ1 ∨ µ2, and

then µ1 ∨ µ2 would not be a matching. The general result is: For any two

matchings, µi and µj, all the men (m, m′) who stand in the relation “m’s

partner in µi is m′’s partner in µj” must agree on how they rank their partners

in µi and µj.
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The following diagram presents a graph among the men for each pair of

matchings inH. For example, the graph corresponding to µ1 and µ2 has M as

vertex-set and (directed) edges given by the relation that one man’s partner

in µ1 is the related man’s partner in µ2. So there is an edge m2 → m4 because

µ1(m2) = µ2(m4); there is an edge m3 → m2 because µ1(m3) = µ2(m2), and

so on.

µ1 − µ2 : m1
��

m2 22m3
tt m4

tt

µ1 − µ3 : m1 22m2
tt m3

tt m4
��

µ2 − µ3 : m1
,,m2EE m3

** m4ee

The graph corresponding to µ1−µ2 has two connected components, {m1}
and C = {m2, m3, m4}. By our previous argument, all the men in C must

agree on how they rank their partners in µ1 and µ2. Similarly, reading

the corresponding connected components from the diagram, all the men in

C ′ = {m1, m2, m3} must agree on µ1 and µ3. And all the men in C ′′ =

{m1, m3, m4} must agree on µ2 and µ3.

It is clear how this argument restricts the possible preference profiles that

might rationalize H, but it does not by itself give a criterion for deciding that

H is not rationalizable. The criterion arises from the presence of men who

have the same partner in different matchings.

Assume that µ2(m) P (m) µ1(m) for all m ∈ C. Since m2 ∈ C, and

µ2(m2) = µ3(m2), we must have that µ3(m2) P (m2) µ1(m2). But m2 ∈ C ′ so

µ3(m) P (m) µ1(m) for all m ∈ C ′. Similarly, m4 ∈ C with µ1(m4) = µ3(m4).

So µ2(m4) P (m) µ1(m2) now implies that µ2(m) P (m) µ3(m) for all m ∈ C ′′.
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The problem is that m1 ∈ C ′ ∩ C ′′, so we would need that

µ2(m1) P (m1) µ3(m1) P (m1) µ1(m1).

This is a violation of the antisymmetry of P (m1), as µ2(m1) = µ1(m1). Hence

H is not rationalizable.

The idea—which is formalized below—is that the presence of men with

the same partner in different matchings gives a relation between objects such

as C, C ′ and C ′′. These relations must satisfy a consistency condition for H
to be rationalizable.

4. Preferences over Partners in Pairs of
Matchings

The discussion in Section 3 suggests that two objects are important in study-

ing rationalizability. The first is the set of connected components obtained

from pairs of matchings in H, which we denote by C below. The second

is the relation between connected components in C, derived from having

agents with the same partners in two different matchings. In this section we

describe the connected components, and show how these capture the essence

of stability.

Fix a pair of matchings µi and µj in H. Consider the (directed) graph

for which M is the vertex-set, and E(µi, µj) is the set of edges, defined by:

(m, m′) ∈ E(µi, µj) if and only if µi(m) = µj(m
′). Denote by C(µi, µj) the

set of all connected components of (M, E(µi, µj)). See Section 3 for examples

of these.

There is an analogous graph with the women as vertexes: Let (W, F (µi, µj))

be the graph for which the vertex-set is the set of women, and where (w,w′) ∈
F (µi, µj) if µj(w) = µi(w

′). A first result relates the women’s graph and the

men’s graph (its proof is trivial and thus omitted).
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Lemma 4: The following statements are equivalent:

1. C is a connected component of (M, E(µi, µj))

2. µi(C), the image of C through µi, is a connected component of

(W, F (µi, µj))

In addition, if C is a connected component of (M, E(µi, µj)), then C is

a cycle, and µj(C) = µi(C).

Lemma 5: Let H be rationalized by preference profile P . If µi, µj ∈ H,

and C ∈ C(µi, µj), then either (1) or (2) hold:

µi(m) P (m) µj(m) for all m ∈ C

and µj(w) P (w) µi(w) for all w ∈ µi(C); (1)

µj(m) P (m) µi(m) for all m ∈ C

and µi(w) P (w) µj(w) for all w ∈ µi(C). (2)

Further, if P is a preference profile such that: for all µi, µj ∈ H, and

C ∈ C(µi, µj), either (1) or (2) hold, and in addition

∅ P (m) w if and only if w /∈ {µ(m) : µ ∈ H}

∅ P (w) m if and only if m /∈ {µ(w) : µ ∈ H} ,

then P rationalizes H.

Remark: The first statement in Lemma 5 is a refinement of the classical

results on opposition and coincidence of interest in matching markets. The

classical results say that the agents on the same side of the market agree,

and agents on opposite sides disagree, on their preferences among certain

pairs of matchings. There may still be men, for example, who disagree on
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the ranking of two matchings, but they must be in different components (see

Example 7 where certain men must disagree in any rationalizing preference

profile).

The first part of Lemma 5 says that this coincidence/opposition holds for

any pair of matchings within the connected components of the corresponding

graph. Using the lattice structure on S(P ) (Knuth, 1976), it can be restated

as follows. If P rationalizes H, then for any C ∈ C(µi, µj), either (3) or (4)

must hold:

(µi ∧ µj)|C = µi|C and (µi ∨ µj)|C = µj|C (3)

(µi ∧ µj)|C = µj|C and (µi ∨ µj)|C = µi|C .. (4)

The second part of the lemma says that this opposition and coincidence

is all that stability requires—up to the ability to construct well-defined pref-

erences with the opposition and coincidence property. As we show in the rest

of the paper, to construct such preferences is not trivial.

These components of (M, E(µi, µj)) are also used by Irving and Leather

(1986) (see also Roth and Sotomayor (1990), Section 3.2), and in a recent

paper on the assignment game by Nuñez and Rafels (2006). Irving and

Leather construct certain graphs from given preference profiles, and use the

resulting cycles to find new stable matchings. When a stable matching is

found, Irving and Leather’s components coincide with ours. Nuñez and Rafels

use them to study the dimension of the core of the assignment game.

Proof: We prove the first statement. If C is a singleton there is nothing

to prove. Assume then that C has two or more elements. Note that C

is a cycle, C =
{
m1, . . . mL

}
, with (ml, ml+1) ∈ E(µi, µj) (modulo L) for

l = 1, . . . L. This is because for each m ∈ M there is a unique m′ ∈ C with

(m′, m) ∈ E(µi, µj) and a unique m′′ ∈ C with (m, m′′) ∈ E(µi, µj).
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Now, say that µi(m
l) P (ml) µj(m

l) for some l. We shall prove that

µi(m) P (m) µj(m) for all m ∈ C. Now, S(P ) has a lattice structure (Knuth,

1976), and (µi∨µj) is obtained by letting (µi∨µj)(m) be the best, according

to P (m), of µi(m) and µj(m). Then, (µi ∨ µj)(m
l) = µi(m

l). Now we must

have µi(m
l+1) P (ml+1) µj(m

l+1) because µj(m
l+1) P (ml+1) µi(m

l+1) would

imply that

(µi ∨ µj)(m
l+1) = µj(m

l+1) = µi(m
l) = (µi ∨ µj)(m

l),

and µi ∨ µj would not be a matching. The result that µi(m) P (m) µj(m) for

all m ∈ C follows by induction.

Let w ∈ µi(C). We must have that µi(w) 6= µj(w) or the component of

(W, F (µi, µj)) that w is in would be a singleton and would not coincide with

µi(C) (Lemma 4). Now we show that µj(w) P (w) µi(w): if we instead have

µi(w) P (w) µj(w), then (µi(w), w) would block µj, as µi(w) ∈ C and thus

w P (µi(w)) µj(µi(w)).

So we have established that µi(m
l)P (ml)µj(m

l) for some l implies state-

ment (1) of the lemma. The argument that µj(m
l) P (ml) µj(m

l) for some l

implies statement (2) is analogous.

We now prove the second part of the lemma. Let µ ∈ H. It is clear that µ

is individually rational by the requirement on P . Let w and m be such that

w P (m) µ(m). Let i and j be such that w = µi(m) and µ = µj. There must

exist such an i because ∅P (m)w if w is not m’s partner in some matching in

H. Let C ∈ C(µi, µj) with m ∈ C. Then w ∈ µi(C) and, by statement (1)

of the lemma, µj(w) P (w) µi(w) = m. Hence (m, w) is not a blocking pair.

Since (m, w) was arbitrary, µ is stable. 2
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5. Relations Between Components, and a
Necessary Condition for Rationalization

The discussion in Section 3 suggests that there are relations between compo-

nents of the pairwise graphs; relations that come from the presence of some

agents who are matched with the same partner in two (or more) matchings.

The discussion also suggests that the rationalizability of H depends on the

restrictions imposed by those relations. Here we define the relations and

show how they give a simple necessary condition for H to be rationalizable.

Let C be the set of all non-singleton elements of C(µi, µj), for any two

distinct µi, µj ∈ H with i < j. That is,

C = {C ⊆ M : |C| ≥ 2 and ∃(µi, µj) s.t. i < j and C ∈ C(µi, µj)} .

Note that a set may be a connected component of more than one graph

(M, E(µi, µj)). If a set C is in C(µi, µj) and in C(µh, µk), we abuse notation

and regard each “copy” of C as a different element of C. As a result, for

each C ∈ C there is a unique pair (µi, µj) such that C ∈ C(µi, µj). This

abuse does not, we believe, confuse, and makes the notation lighter.

We define two binary relations on the elements of C, and denote them by

4 and 5. The meaning of the relations is as follows. We can regard C and

C ′ (in C) as equivalent if they share one matching in the pair generating the

graphs of which they are components, and there is an agent in C ∩ C ′ with

the same partner in the differing matchings. We write C 4 C ′ or C 5 C ′

depending on which of the matchings is the same, and which has an agent

with the same partner: 4 checks whether starting from i, the other two

indexes j and k are on the same side of i, i.e. whether both j < i and k < i

or both j > i and k > i; 5 checks whether i is in between j and k.
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Definition (4): Let C, C ′ ∈ C. Say that C4C ′ if there are three distinct

numbers, i,j, and k, in {1, 2, . . . K}, such that

• either C ∈ C(µi, µj) and C ′ ∈ C(µi, µk)

or C ∈ C(µj, µi) and C ′ ∈ C(µk, µi),

• and there is m ∈ C ∩ C ′ with µj(m) = µk(m).

Definition (5): Let C, C ′ ∈ C. Say that C5C ′ if there are three distinct

numbers, i,j, and k, in {1, 2, . . . K}, such that

• either C ∈ C(µi, µj) and C ′ ∈ C(µk, µi)

or C ∈ C(µj, µi) and C ′ ∈ C(µi, µk),

• and there is m ∈ C ∩ C ′ with µj(m) = µk(m).

Let E4 be the set of pairs (C, C ′) with C4C ′ and E5 be the set of pairs

(C, C ′) with C 5 C ′. So E4 is another notation for the binary relation 4
and E5 is the binary relation 5. This duplicate notation is useful.

Now, (C,E4 ∪ E5) represents the (undirected) graph with vertex-set C,

and where there is an edge between C and C ′ if either C 4 C ′ or C 5 C ′.

Note that (C,E4 ∪ E5) is loop-free because both 4 and 5 are irreflexive.

Theorem 6: If H is rationalizable, then (C,E4 ∪ E5) can have no

cycle with an odd number of 5 edges.

Theorem 6 follows from Lemma 10 below. The idea behind the theorem

is simple: each C ∈ C is “oriented” by whether the men in C prefer the first

or the second matching in the pairwise graph from which C is taken. The 4
relation preserves the orientation while 5 reverses it. Hence there cannot be

a cycle with an odd number of 5s.
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Remark: The necessary condition in Theorem 6 can be checked in polyno-

mial time. Note that the pairwise graphs (M, E(µi, µj)) can be constructed

in time polynomial in the number of agents. The absence of odd cycles is

equivalent to the graph (of the equivalence classes of 4) being bipartite, and

this can be checked in linear time.

The following example illustrates the use of the pairwise graphs and re-

lations 4 and 5. It also presents an instance of an H for which there is no

rationalizing preference profile P with H = S(P ).2

Example 7: Let M = {m1, m2, m3, m4, m5} and W = {w1, w2, w3, w4, w5}.
Let H = {µ1, µ2, µ3} defined as:

m1 m2 m3 m4 m5

µ1 w1 w2 w3 w4 w5

µ2 w1 w3 w2 w5 w4

µ3 w3 w2 w5 w1 w4 .

Note that

C(µ1, µ3) = {{m2} , {m1, m3, m4, m5}}

C(µ2, µ3) = {{m5} , {m1, m2, m3, m4}}

C(µ1, µ2) = {{m1} , {m2, m3} , {m4, m5}} .

Write C1,3 and C2,3 for the non-singleton elements of C(µ1, µ3) and C(µ2, µ3),

respectively. Write C1
1,2 for the {m2, m3} element, and C2

1,2 for {m4, m5}, of

C(µ1, µ2).

Then µ1(m1) = µ2(m1) implies that C1,34C2,3, µ1(m2) = µ3(m2) implies

C2,3 5 C1
1,2, and µ2(m5) = µ3(m5) implies C1,3 4 C2

1,2. These are all the

relations among components. Note that there are no cycles:

C2
1,2 4 C1,3 4 C2,3 5 C1

1,2.

2Example 3 is another instance, but it is not very subtle, since it essentially involves
two separate two-men, two-women, matchings.
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Let P be a rationalizing profile. Since C1,3 4 C2,3, all men must either

prefer their partner in µ1 over µ3 and µ2 over µ3, or prefer µ3 over µ1 and

µ3 over µ2. Without loss of generality, suppose the first case holds. Then

C2
1,2 4 C1,3 implies that m4 and m5 prefer their partner in µ1 over µ2. And

C2,3 5 C1
1,2 implies that m2 and m3 prefer their partner in µ2 over µ1. But

then one can check that the matching µ′ must be stable for P , where µ′ is:

m1 m2 m3 m4 m5

µ′ w1 w3 w2 w4 w5

Example 8: Consider an example with four men and four women, and H =

{µ1, µ2}, where µ1 and µ2 are the first two matchings in Section 3. Clearly, H
is rationalizable; the preferences where all men rank their partner in µ1 over

their partner in µ2, and women have the opposite preferences, rationalize H.

As we have seen, though, when we add matching µ3 in Section 3, the resulting

set of matchings cannot be rationalized. One way of understanding the effect

of adding µ3 is that one cannot add it on top of µ1 and µ2 in the men’s

preferences because then µ3(m2)P (m2)µ1(m2)P (m2)µ2(m2), while µ3(m2) =

µ2(m2); one cannot add it below µ1 and µ2 because then µ1(m4) P (m4)

µ2(m4) P (m4) µ3(m4), while µ1(m4) = µ3(m4); and so on.

In light of Lemma 5, Theorem 6 expresses the requirement that the co-

incidence/opposition of interest property be consistent with the connections

across components implied by the agents for whom two matchings are the

same. The theorem does not guarantee that the components and the relations

between components are compatible with well-defined preferences.

A first requirement of the compatibility with well-behaved preferences is

that C, E4 and E5 cannot imply intransitivity. We express this requirement

by making 4 a larger relation: we define a monotone increasing sequence{
Ek
4

}
, and work with the larger binary relation D4 = ∪∞k=1E

k
4. Let E0

4 =
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E4. Given Ek
4, for k ≥ 0, let Ek+1

4 be those edges (C, C ′) between elements

in C such that either (C, C ′) ∈ Ek
4 and/or there are i, j, h and C̃ ∈ C with

C ∩ C̃ ∩ C ′ 6= ∅ such that C ∈ C(µi, µj) and either 1 or 2 hold:

1. i < j < h, C̃ ∈ C(µj, µh), C ′ ∈ C(µi, µh), and C and C̃ are connected

in
(
C,Ek−1

4
)

2. i < h < j, C̃ ∈ C(µh, µj), C ′ ∈ C(µi, µh), and there is a path in(
C,Ek−1

4 ∪ E5
)

between C and C̃ with an odd number of 5s.

Let D4 = ∪∞k=1E
k
4. Note that D4 = EL

4, for some L ≥ 1, as the sequence

of Ek
4 is monotone increasing and C is finite.

Theorem 9: If H is rationalizable, then (C,D4 ∪ E5) can have no

cycle with an odd number of 5 edges.

The proof of Theorem 9 is below.

Let H be rationalizable. Define the function d : C → {−1, 1} as follows.

For each C ∈ C, let i, j be such that C ∈ C(µi, µj). Say that d(C) = 1 if

(∀m ∈ C)(µi(m) P (m) µj(m)) and −1 otherwise. Note that Lemma 5 says

that all m ∈ C must agree on their preferences over µi(m) and µj(m).

Lemma 10: LetH be rationalizable and (C1, . . . , CN) be a cycle in (C,E4 ∪ E5).

Then, for each n and L, mod N ,

d(Cn) = ΠL
l=n(−1)

1{Cl5Cl+1}d(CL) (5)

Proof: Let P rationalize H. We only prove the case L = n + 1; the result

then follows by induction. Let Cn 4 Cn+1. There are i, j and k such that

(say) Cn ∈ C(µi, µj) and Cn+1 ∈ C(µi, µk). There is m∗ ∈ Cn ∩ Cn+1 with
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µj(m
∗) = µk(m

∗), so µi(m
∗)P (m∗)µj(m

∗) if and only if µi(m
∗)P (m∗)µk(m

∗).

Since m∗ ∈ Cn ∩ Cn+1, Lemma 5 implies

(∀m ∈ Cn) (µi(m) P (m) µj(m)) iff (∀m ∈ Cn+1) (µi(m) P (m) µk(m)) .

Hence, d(Cn) = d(Cn+1). Similarly when Cn ∈ C(µj, µi) and Cn+1 ∈
C(µk, µi).

On the other hand, when Cn 5 Cn+1 and i, j, and k are such that

Cn ∈ C(µi, µj) and Cn+1 ∈ C(µk, µi), the existence of m∗ ∈ Cn ∩ Cn+1

with µj(m
∗) = µk(m

∗) implies (Lemma 5) that d(Cn) = 1 if and only if

d(Cn+1) = −1. 2

Proof (Proof of Theorem 6): Lemma 10 implies Theorem 6 because

any cycle C1, . . . CN with an odd number of5s implies that d(C1) = (−1)d(C1).2

Proof (Proof of Theorem 9): Let H be rationalizable by the prefer-

ence profile P . We prove Theorem 9 by induction. By Theorem 6, (C,E4 ∪ E5) =(
C,E0

4 ∪ E5
)

can have no cycle with an odd number of 5. Lemma 10 im-

plies that the formula (5) holds in
(
C,E0

4 ∪ E5
)
. Suppose this statement is

true of
(
C,Ek

4 ∪ E5
)
; if we prove that it is true of

(
C,Ek+1

4 ∪ E5
)

then the

proof of the theorem is done.

Let (C, C ′) ∈ Ek+1
4 \Ek

4. We shall prove that d(C) = d(C ′). Let i, j, h and

C̃ ∈ C with C ∩ C̃ ∩ C ′ 6= ∅ be such that C ∈ C(µi, µj) is in the situation

described by Item 1 or Item 2. Suppose that they are in the situation de-

scribed by Item 1. Since C and C̃ are connected in
(
C,Ek−1

4
)
, by Lemma 10,

we have d(C) = d(C̃). Suppose, without loss of generality, that d(C) = 1.

Let m ∈ C ∩ C ′ ∩ C̃; then d(C) = d(C̃) = 1 implies µi(m) P (m) µj(m) and

µj(m) P (m) µh(m). So µi(m) P (m) µh(m) and we must have d(C ′) = d(C)

Suppose now we are in the situation described by Item 2. The existence
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of a path with an odd number of 5s connecting C and C̃ implies that

d(C) 6= d(C̃). Suppose, without loss of generality, that d(C) = 1. Let

m ∈ C ∩ C ′ ∩ C̃; then 1 = d(C) 6= d(C̃) implies µi(m) P (m) µj(m) and

µj(m) P (m) µh(m). So µi(m) P (m) µh(m) and we must have d(C ′) = d(C).

Now, since d(C ′) = d(C) for all (C, C ′) ∈ Ek+1
4 \Ek

4, and holds in
(
C,Ek

4 ∪ E5
)
,

(5) holds in
(
C,Ek+1

4 ∪ E5
)
. Then

(
C,Ek+1

4 ∪ E5
)

has no cycles with an

odd number of 5s. 2

6. A Necessary and Sufficient Condition for
Rationalization

The graph (C,D4 ∪ E5) captures some of the requirements put by well-

defined preferences, but not all of them. In this section we express the

remaining requirements as a system of polynomial inequalities. The idea is

that C ∈ C(µi, µj) be assigned a value of 1 if all m ∈ C prefer µi over µj

and value −1 if they prefer µj. It is then simple to control the transitivity of

preferences by controlling the values one can assign to the different Cs. The

result is a characterization of the H that can be rationalized.

The characterization poses the question of when the rationalizing P is

unique; in econometrics such a situation is called (exact) identification. It is

easy to show (Proposition 12) that, whenH is rationalizable, the rationalizing

P will generally not be unique.3

A first step in the characterization is that all C and C ′ that are connected

in (C,D4) must have the same value, so we can treat them as the same

object. Let C be the set of all connected components of (C,D4). Let (C, D)

be the graph that has C as vertex-set, and where (C, C ′) ∈ D if there is C ∈ C
3Another interesting question (posed by an anonymous referee) is if there is a rational-

izing P such that S(P ) is minimal.
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and C ′ ∈ C ′ with C 5 C ′.

If (C,D4 ∪ E5) has no cycle with an odd number of 5s, (C, D) is a

well-defined loop-free graph: For any two C and C ′ in the same component

C ∈ C it cannot be that C 5C ′, as there is a path from C to C ′ in (C,D4)

and C 5 C ′ would imply a cycle with exactly one 5.

Let B be a ternary relation on C defined as follows: (C, C ′, C ′′) ∈ B if

there are i, j, and h, i < j < h, and C ∈ C ∩C(µi, µj) C ′ ∈ C ′ ∩C(µj, µh)

and C ′′ ∈ C ′′ ∩C(µi, µh) with C ∩ C ′ ∩ C ′′ 6= ∅. A triple (C, C ′, C ′′) stands in

relation B if its components have non-empty intersection, and correspond to

three pairwise graphs, with indexes i, j, j, h and i, h, and i < j, h.

Theorem 11: H is rationalizable if and only if (C,D4 ∪ E5) has no

cycle with an odd number of 5 edges, and for the resulting graph (C, D),

there is a function d : C → {−1, 1} that satisfies:

1. C 5 C ′ ⇒ d(C) + d(C ′) = 0,

2. (C, C ′, C ′′) ∈ B ⇒ (d(C) + d(C ′)) d(C ′′) ≥ 0.

Further, there is a rationalizing preference profile for each function d

satisfying (1) and (2).

Proof: We only prove the “if” statement; “only if” is straightforward given

the results in the previous section. Let (C,D4 ∪ E5) have no cycle with an

odd number of 5s, and d be a function in the conditions of the theorem.

Abusing notation, interpret d as defined on C by letting d(C) = d(C) for all

C ∈ C. Note that, for all C there is some C 3 C.

For each m ∈ M , construct preferences P (m) by setting ∅ P (m) w for all

w /∈ {µ(m) : µ ∈ H}, w P (m) ∅ for all w ∈ {µ(m) : µ ∈ H}, and µi(m) P (m)

µj(m) if either i < j and d(C) = 1 for C ∈ C(µi, µj) with C 3 m, or j < i

and d(C) = −1 for C ∈ C(µj, µi) with C 3 m.
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For each w ∈ W , define P (w) by ∅ P (w) m for all m /∈ {µ(w) : µ ∈ H},
m P (w) ∅ for all m ∈ {µ(w) : µ ∈ H}, and µi(w) P (m) µj(w) if either i < j

and d(µi(C)) = −1 for µi(C) ∈ C(µi, µj) with µi(C) 3 µi(w) or j < i and

d(µi(C)) = 1 for µi(C) ∈ C(µj, µi) with µi(C) 3 µi(m). Extend P (m) and

P (w) arbitrarily to pairs of agents that are ranked below ∅.
Note that P (m) and P (w) are antisymmetric. We show that P (m) is

transitive. The proof that P (w) is transitive is analogous. Let µi(m) P (m)

µj(m) and µj(m) P (m) µh(m). We shall prove that µi(m) P (m) µh(m).

Case 1. Let i < j < h, m ∈ C ∈ C(µi, µj), m ∈ C ′ ∈ C(µj, µh) and

m ∈ C ′′ ∈ C(µi, µh). Note that µi(m) P (m) µj(m) implies d(C) = 1 and

µj(m)P (m)µh(m) implies d(C ′) = 1. If C and C ′ are connected in (C,D4),

then, by the construction of D4, C and C ′′ are also connected. So (5) implies

that d(C ′′) = d(C) = 1; thus µi(m) P (m) µh(m). Now let C and C ′ not be

connected in (C,D4). If C and C ′′ are connected then there is nothing to

prove, as (5) gives d(C ′′) = d(C) = 1 and µi(m) P (m) µh(m). Similarly, we

obtain µi(m) P (m) µh(m) if C ′ and C ′′ are connected. Suppose then that

C, C ′ and C ′′ are not connected in (C,D4). Let C, C ′, C ′′ ∈ C be such that

C ∈ C, C ′ ∈ C ′, and C ′′ ∈ C ′′; C, C ′, and C ′′ are all different because C,

C ′ and C ′′ are disconnected. Since m ∈ C ∩ C′ ∩ C ′′, (C, C ′, C ′′) ∈ B. Now,

d(C) = d(C ′) = 1 implies d(C) = d(C ′) = 1, so Item (2) of the theorem

requires that 2d(C ′′) ≥ 0, i.e. d(C ′′) = 1. Hence, µi(m) P (m) µh(m).

The argument in Case 1 also yields that,

i < j < h
µj(m) P (m) µi(m)
µh(m) P (m) µj(m)

 implies µh(m) P (m) µi(m). (6)

This gives us µi(m) P (m) µh(m) in the case h < j < i by applying (6) to

(i′, j′, h′) defined as i′ = h, j′ = j and h′ = i.

Case 2. Let i < h < j, m ∈ C ∈ C(µi, µj), m ∈ C ′ ∈ C(µh, µj) and
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m ∈ C ′′ ∈ C(µi, µh). So d(C) = 1 and d(C ′) = −1.

First, if C 4 C ′′ we have d(C) = d(C ′′) so there is nothing to prove.

Suppose then that C 4 C ′′ is false. It cannot be that C ′ 4 C ′′, since that

would imply C ′ 4 C by the construction of D4, and d(C ′) 6= d(C) implies

that C ′ and C are disconnected in (C,D4). So it must be the case that all

of C, C ′ and C ′′ are disconnected in (C,D4). Let C, C ′, C ′′ ∈ C be as in Case

1. Then (C ′′, C ′, C) ∈ B. By Item (2) of the theorem, d(C ′′) must satisfy

(d(C ′′)− 1) ≥ 0. So d(C ′′) = 1 and µi(m) P (m) µh(m).

The argument in Case 2 also covers the case h < i < j, by a reasoning

similar to the one for h < j < i at the end of Case 1.

Case 3. Let j < i < h, m ∈ C ∈ C(µj, µi), m ∈ C ′ ∈ C(µj, µh) and

m ∈ C ′′ ∈ C(µi, µh). Now we have d(C) = −1 and d(C ′) = 1. First, if

C ′ 4 C ′′, then d(C ′′) = 1 so there is nothing to prove. Second, it cannot

be that C 4 C ′′, since that would imply C 4 C ′ by the construction of

D4, and d(C ′) 6= d(C) implies that C ′ and C are disconnected in (C,D4).

Let C, C ′, C ′′ ∈ C be as in Case 1. Then (C, C ′′, C ′) ∈ B. By Item (2)

of the theorem, d(C ′) must satisfy (d(C ′′)− 1) ≥ 0. So d(C ′′) = 1 and

µi(m) P (m) µh(m).

The argument in Case 3 also covers the case j < h < i by a reasoning

similar to the one in Case 1.

We show that all µ ∈ H are stable under the constructed preferences. Let

µ ∈ H. It is clear that µ is individually rational. Let w and m be such that

w P (m) µ(m). Let i and j be such that w = µj(m) and µ = µi. There must

exists such a j because ∅ P (m) w if w is not m’s partner in any matching in

H. Without loss of generality, say that i < j. Let C ∈ C(µi, µj) with m ∈ C,

so d(C) = −1. Then w ∈ µi(C), so the construction of P (w) implies that

µi(w) P (w) µj(w). So µi(m) P (w) m, and hence (m, w) cannot block µ. 2
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Finally, we show that matching theory is generally not exactly identified.

If H is rationalizable, there are generally many different preference relations

that rationalize it. The source of the different preferences is that, if m is not

matched to w in any matching in H, then the data in H contains very little

information on m’s standing in w’s preference relation.

Let ua be the number of agents that a is not matched to in any matching

in H. Note that ua counts men if a is a woman and women if a is a man.

Say that two preference profiles are essentially different if there is at least

agent on which the preference for two acceptable partners is different.

Proposition 12: If H is rationalizable, then it is rationalizable by at

least

|M |2|M | (Πm∈MumΠw∈W uw)

different preference profiles, of which at least

Πm∈Mum(|M | − |um|)Πw∈Muw(|M | − |uw|)

are essentially different.

For example, suppose 20 men and women, and that each agent is matched

to 10 agents in some matching in H. If H is rationalizable, it is rationalizable

by at least 1080 essentially different preference profiles.

Proof: Let P rationalize H such that any unmatched agents are considered

unacceptable. Fix a man m. For each w that m is not matched to in any

matching in H, we can modify P by setting ∅ P (w) m and vary P (m) by

placing w in any of the possible |W | (= |M |) places in the ranking of m’s

preferences (or |W |−um places in the ranking among m acceptable partners

for the second calculation). This will not change the fact that all µ ∈ H
are individually rational, and the only blocking pair it could give rise to is
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(m, w), but having set ∅P (w)m guarantees that (m, w) will not be a blocking

pair. 2

7. Rationalization as a von Neumann-Morgenstern
stable set

We have restricted attention to the rationalization of the matchings in H as

stable matchings, but one could study other solution concepts as well. We

discuss briefly the rationalization by von Neumann-Morgenstern stable sets;

the first study of these in matching theory is Ehlers (2007).4

Fix a set of men, M , and women, W , and a preference profile P . Say that

a matching µ′ dominates a matching µ if there is a pair (m, w) ∈ M × W

with w = µ′(m), wP (m)µ(m), and mP (w)µ(w). A set of matchings V ⊆M
is a von Neumann-Morgenstern stable set if (a) no matching in V dominates

another matching in V , and (b) if µ ∈ M \ V , then there is µ′ ∈ V which

dominates µ.

Proposition 13: If H is rationalizable, then it is rationalizable by a P

such that S(P ) is a von Neumann-Morgenstern stable set.

Proof: Let H be rationalizable. Then it is rationalizable by a preference

profile P in which, for any man m, a woman w is unacceptable if she is not

matched to him in any matching in H. Similarly for women. We argue that

S(P ) is a von Neumann-Morgenstern stable set: By Theorem 1 in Ehlers

(2007), a set V is a von Neumann-Morgenstern stable set if, for any µ ∈ V ,

there is no pair of agents who are matched in some matching in V and who

would block µ. For any matching with the constructed preferences, a block

must be a block of agents who are matched in some matching in H, as any

4One could also consider bargaining sets (Klijn and Massó, 2003; Echenique and Oviedo,
2006).
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other pair would be mutually unacceptable. So S(P ) is the set of matchings

which are not blocked by pairs of agents who are matched in H. In addition,

the matchings in S(P ) are individually rational, so with the constructed P

they must have agents matched to partners they are matched with in some

matching in H. Hence S(P ) is a stable set by Theorem 1 in Ehlers (2007).2

Proposition 13 implies that the notion of rationalizing by a von Neumann-

Morgenstern stable set is weaker than rationalization by stable matchings,

and leads to another use of Theorem 11, which then provides preference pro-

files under which one obtains a rationalization by von Neumann-Morgenstern

stable sets.

The proposition follows very obviously from setting agents as unaccept-

able when they are not partners in a matching in H. Similarly, if H is not

rationalizable by preferences with this property, it will not be a subset of a

von Neumann-Morgenstern stable set for any such preferences. But it could

be in a stable set for preferences where unmatched agents are acceptable.

8. Probability of rationalizing

The results on rationalizability have some implications for the statistical

“power” of matching theory. Power refers here to how likely it is that purely

random outcomes will look as if they were generated by the theory; i.e. how

likely it is that one can rationalize random matchings.

We show that, for a fixed number of observed matchings in a large popu-

lation, the probability of rationalizing purely random matchings is bounded

away from zero. The result says that large populations require large sample

sizes, which is probably not surprising.

Let Mn be a set of men and Wn a set of women, each with n elements. Let

Mn be the resulting set of possible matchings with no single agents. Endow
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Mn with the uniform distribution, and consider sets Hk of k matchings

chosen independently at random from Mn. That is, Hk is a random set of

matchings obtained by choosing k matchings from Mn, where each possible

k-tuple of matchings has the same probability of being selected.

Proposition 14: If k is fixed,

lim inf
n→∞

P {Hk is rationalizable } ≥ e−k(k−1)/2

Proof: Fix k and n. Consider the realizations of Hk such that, for all m,

µi(m) 6= µj(m) for all µi, µj ∈ Hk. Then Hk is rationalizable in (Mn, Wn)

by Proposition 2. For each such realization of Hk, form a k × n array (ast)

by setting ast = µs(mt). Then each woman will appear exactly once in each

row, as the µs are matchings. And each woman will appear at most once

in each column, by the assumption that for all m, µi(m) 6= µj(m) for all

µi, µj ∈ Hk. The resulting array thus forms a Latin rectangle (see e.g. Denes

and Keedwell (1974)).

Thus there are as many realizations of Hk in the hypothesis of Propo-

sition 2 as there are k × n Latin rectangles. In turn, Erdös and Kaplanski

(1946) proved that, as n →∞, the number of k × n is asymptotic to

(n!)ke−(k
2). (7)

On the other hand, an arbitrary realization of Hk forms an array where

each woman appears exactly once in each row, but may be repeated in

columns. So each row is a permutation of the women, and there are as

many Hk as ways of making k permutations, that is (n!)k. The probability

then of a draw of Hk in the hypothesis of Proposition 2 is asymptotic to

e−(k
2), which gives the result. 2
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As we remarked above, the message in Proposition 14 is probably not

surprising, but it hopefully illustrates a potential for statistical applications

of the rationalizability results developed in the paper. The proof of the

proposition builds on the very crude sufficient condition for rationalizability

in Proposition 2 of Section 2. There is clearly potential for refining this

result.
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