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Abstract

Most analyses of the U.S. Great Moderation have been based on structural
VAR methods, and have consistently pointed towards good luck as the main
explanation for the greater macroeconomic stability of recent years. Based
on an estimated New-Keynesian model in which the only source of change is
the move from passive to active monetary policy, we show that VARs may
misinterpret good policy for good luck.
First, the policy shift is sufficient to generate decreases in the theoretical

innovation variances for all series, and decreases in the variances of inflation
and the output gap, without any need of sunspot shocks. With sunspots, the
estimated model exhibits decreases in both variances and innovation variances
for all series. Second, policy counterfactuals based on the theoretical structural
VAR representations of the model under the two regimes fail to capture the
truth, whereas impulse-response functions to a monetary policy shock exhibit
little change across regimes.
Since these results are in line with those found in the structural VAR-

based literature on the Great Moderation, our analysis suggests that existing
VAR evidence is compatible with the ‘good policy’ explanation of the Great
Moderation.

∗We wish to thank F. Canova, T. Cogley, G. Corsetti, M. Gertler, M. Giannoni, C. Julliard,
T. Lubik, G. Primiceri, J. Rubio-Ramirez, F. Ravenna, F. Schorfheide, A. Scott, I. Wolden Bache,
and T. Zha for helpful discussions, and seminar participants at the 2007 NBER Summer Institute,
the Federal Reserve Board, the Federal Reserve Banks of New York and Richmond, the London
School of Economics, Universitat Autonoma de Barcelona, the Bank of Spain, the 2006 meetings
of the Royal Economic Society and the Society for Computational Economics, the 5th Workshop
on Macroeconomics Dynamics held at the Bank of Italy and the 2nd Oslo Workshop on Mone-
tary Policy for comments. The views expressed in this paper are those of the authors, and do not
necessarily reflect those of the European Central Bank or the Bank of England. Address for corre-
spondence are: Luca Benati, Monetary Policy Strategy Division, European Central Bank, Kaiser-
strasse 29, D-60311, Frankfurt-am-Main, Germany; email: Luca.Benati@ecb.int; Paolo Surico, Mon-
etary Policy Committee Unit, Bank of England, Threadneedle Street, London, EC2R 8AH; email:
Paolo.Surico@bankofengland.gsi.gov.uk.

1



1 Introduction

Post-WWII U.S. macroeconomic history is usually divided into two distinct sub-
periods. The former period, which extends up to the end of the Volcker disinflation, is
characterised by a significant extent of macroeconomic turbulence, with highly volatile
inflation and output growth. The latter period, from the end of the Volcker disinflation
up to the present day, is marked in contrast by significantly smaller volatilities for both
inflation and output growth. These dramatic changes in the reduced-form properties
of the U.S. economy over the last several decades characterise a phenomenon known
as the ‘Great Moderation’.1

A vast empirical literature has investigated the source(s) of the Great Moderation
in an attempt to disentangle the relative contributions of two main explanations:
good policy and good luck. Based on (time-varying or Markov-switching) structural
VAR methods, the good luck hypothesis has been advocated by a number of authors
including Stock and Watson (2002), Primiceri (2005), Sims and Zha (2006), and
Gambetti, Pappa, and Canova (2006) (the disaggregated analysis of Mojon (2007),
based on a Markov-switching structural VAR, finds however an important role for
the unsystematic component of monetary policy in fostering the Great Moderation).
Based on estimated sticky-price DSGE models of the U.S. economy, both Lubik and
Schorfheide (2004) and Boivin and Giannoni (2006) find, in contrast, support for the
good policy explanation originally advocated by Clarida, Gali, and Gertler (2000),
according to which a shift in the systematic component of monetary policy has been
the driving force behind the recent, greater macroeconomic stability.
This paper tries to reconcile the two conflicting sets of results by asking whether

methodological differences between the two approaches might account for the differ-
ences in their outcomes. In order to investigate the ability of structural VAR methods
to correctly identify the sources of the Great Moderation, we use as data-generation
process a New Keynesian model in which–in line with Clarida, Gali, and Gertler
(2000) and Lubik and Schorfheide (2004)–the only sources of change are the move
from passive to active monetary policy,2 and the presence of sunspots under indeter-
minacy. We estimate the model via Bayesian methods, and we explore the theoretical
properties of the estimated structure.

1.1 Main results

Our main results may be summarised as follows.

• The shift in the systematic component of monetary policy associated with the
1See in particular Kim and Nelson (1999) and McConnell and Perez-Quiros (2000).
2As we abstract from the role of fiscal policy, the relationship between the monetary policy

stance and equilibrium (in)determinacy in a simple New-Keynesian model is one-to-one, with a
passive (active) rule associated with an indeterminate (determinate) equilibrium. As shown by
Leeper (1991), in more complex settings this is not the case.
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move from indeterminacy to determinacy is sufficient to generate, in population,
(i) decreases in the innovation variances for all series, and (ii) decreases in
the variances of inflation and the output gap, as a simple implication of the
Lucas (1976) critique, and without any need of sunspot shocks. With sunspot
shocks, the estimated model exhibits decreases in both variances and innovation
variances in population when moving from indeterminacy to determinacy, thus
replicating the key features of the Great Moderation.

• Policy counterfactuals based on the theoretical structural VAR representations
of the model under the two regimes fail to capture the truth. In particular,
substituting the VAR’s structural monetary rule corresponding to the indeter-
minacy regime into the VAR for the determinacy regime causes a volatility
decrease–rather than an increase–for two series out of three.

• Impulse-response functions to a monetary policy shock exhibit little change
across regimes.

Overall, our results suggests that existing VAR evidence is, in principle, uninfor-
mative on the issue of the role played by monetary policy in the Great Moderation,
and is compatible with the notion that policy played a crucial role in fostering the
greater macroeconomic stability of recent years.

1.2 Explaining the results

We identify two key dimensions along which VAR analysis turns out to be misleading.
First, in general, changes in the coefficients of the monetary policy rule of the

DSGE model exert their impact on both the coefficients of the VAR representation of
the model, and the elements of the VAR’s covariance matrix of reduced-form inno-
vations. Although this is a well-known implication of the Lucas (1976) critique, this
point has generally been overlooked in the structural VAR-based empirical literature
on the Great Moderation, which has routinely interpreted changes in the volatilities
of the reduced-form innovations, accompanied by weak evidence of changes in the
VAR’s coefficients, as evidence against good policy, and in favor of good luck. As this
paper shows, however, the dominant impact of a change in the systematic component
of monetary policy may well turn out to be the one on the elements of the VAR’s
covariance matrix, with a comparatively milder effect on the VAR’s coefficients. As a
corollary, this logically implies that this kind of evidence does not allow, in principle,
to discriminate among the good policy and good luck explanations, simply because,
within our data generation process, they are essentially observationally equivalent.
Second, changes in the interest rate equation (i.e, the monetary policy rule) of

a structural VAR bear no clear-cut relationship with changes in the parameters of
the monetary policy rule in the underlying DSGE model. To put it differently, there
appears to be a fundamental disconnect between what is structural within a DSGE
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model, and what is defined as structural based on the structural VAR representation
implied by the very same DSGE model. Earlier contributions, on the other hand,
have performed counterfactual simulations in structural VARs under the implicit
presumption that switching the estimated coefficients of the interest rate equations
in the structural VAR provides a reasonable approximation to the authentic policy
counterfactual, i.e. the one you obtain by switching the parameters of the monetary
policy rule in the underlying DSGE model. Again, as the present work shows, such
a presumption is, in general, unjustified.
Finally, the present work contribues to the literature along another dimension,

by identifying a crucial, and previously unnoticed difference between the determi-
nacy and indeterminacy regimes for New Keynesian models. In particular, under
indeterminacy the equivalent minimal state-space representation of the DSGE model
possesses an additional state variable compared with the determinacy regime.

The paper is organized as follows. Section 2 describes the standard New Keyne-
sian model we use in the paper, and discusses details of both the Bayesian estimation
procedure and the specific experiment we construct. Section 3 discusses key theoret-
ical properties of the estimated data-generation process, focusing on the difference
between the equivalent minimal state-space representations of the model under the
two regimes, which imply that the model possesses a VAR representation under de-
terminacy, and a VARMA one under inderminacy. Section 4 shows hos the estimated
structure replicates key aspects of the Great Moderation in population. Section 5
shows how neither structural VAR-based policy counterfactuals, nor impulse-response
functions to a monetary policy shock, point towards the authentic cause of changes
in the data-generation process. Section 6 concludes.

2 Assessing VAR Studies of the Great Moderation

In order to assess the ability of structural VAR methods to correctly identify the
causes of the Great Moderation, we consider the following experiment:

Suppose that the Great Moderation in the United States has been exclusively due to
improved monetary policy, with a passive monetary policy regime in place before Octo-
ber 1979, and an active regime in place thereafter. Would structural VAR techniques
be capable of uncovering the authentic causes of the changes in the data-generation
process?

As we will see, the answer is ‘No’, with structural VAR methods clearly pointing
towards ‘good luck’–i.e., an exogenous reduction in the variance of the structural
shocks–as the true underlying cause of the changes in the DGP, in spite of the fact
that, by construction, everything is here driven by improved monetary policy.
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2.1 The model

The model we use in what follows is given by

Rt = ρRt−1 + (1− ρ)[φππt + φyyt] + �R,t (1)

πt =
β

1 + αβ
πt+1|t +

α

1 + αβ
πt−1 + κyt + �π,t (2)

yt = γyt+1|t + (1− γ)yt−1 − σ−1(Rt − πt+1|t) + �y,t (3)

where Rt, πt and yt are the nominal interest rate, inflation, and the output gap,
respectively; α and γ are price setters’ extent of indexation to past inflation3 and the
forward-looking component in the intertemporal IS curve, respectively; κ is the slope
of the Philips curve; σ is the elasticity of intertemporal substitution in consumption;
ρ, φπ, and φy are the smoothing coefficient and the long-run coefficients on inflation
and the output gap in the monetary policy rule, respectively; and �π,t, �y,t, and �R,t
are three structural disturbances following the AR(1) processes �x,t=ρx�x,t−1+�̃x,t, for
x=π, y, R, with �̃x,t ∼ N(0, σ2x).

2.1.1 Model solution under determinacy and indeterminacy

By defining the state vector as ξt ≡ [Rt, πt, yt, πt+1|t, yt+1|t, �R,t, �π,t, �y,t]0, the vector
collecting the structural shocks as �t ≡ [̃�R,t, �̃π,t, �̃y,t]0, and the vector of forecast
errors as ηt ≡ [ηπt , ηyt ]0–where ηπt ≡ πt-πt|t−1 and ηyt ≡ yt-yt|t−1, the model can then
be put into the ‘Sims canonical form’4

Γ0ξt = Γ1ξt−1 +Ψ�t +Πηt (4)

where Γ0, Γ1, Ψ and Π are matrices conformable to ξt, �t and ηt.
In order to solve the model under both determinacy and indeterminacy, following

Lubik and Schorfheide (2003) we exploit the QZ decomposition of the matrix pencil
(Γ0-λΓ1). Specifically, given a pencil (Γ0-λΓ1), there exist matrices Q, Z, Λ, and Ω
such that QQ0=Q0Q=ZZ 0=Z 0Z=In, Λ and Ω are upper triangular, Λ=QΓ0Z, and
Ω=QΓ1Z. By defining wt=Q0ξt, and by premultiplying (4) by Q, we have:∙

Λ11 Λ12
0 Λ22

¸ ∙
w1,t
w2,t

¸
=

∙
Ω11 Ω12
0 Ω22

¸ ∙
w1,t−1
w2,t−1

¸
+

∙
Q1·
Q2·

¸
(Ψ�t +Πηt) (5)

where the vector of generalised eigenvalues, λ (equal to the ratio between the diagonal
elements of Ω and Λ) has been partitioned as λ=[λ01, λ

0
2]
0, with λ2 collecting all

the explosive eigenvalues, and Ω, Λ, and Q have been partitioned accordingly. In

3See e.g. Smets and Wouters (2003) and Christiano, Eichenbaum, and Evans (2005). The specific
formulation we use herein is Smets and Wouters’.

4See Sims (2002).
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particular, Qj· collects the blocks of rows corresponding to the stable (j=1) and,
respectively, unstable (j=2) eigenvalues. The explosive block of (5) can then be
rewritten as

w2,t = Λ−122 Ω22w2,t−1 + Λ−122 (Ψ
∗
x�t +Π∗xηt) (6)

where Ψ∗x=Q2·Ψ, and Π∗x=Q2·Π. Given that λ2 is purely explosive, obtaining a stable
solution to (4) requires w2,t to be equal to 0 for any t ≥0. This can be accomplished
by setting w2,0=0, and by selecting, for each t >0, the forecast error vector ηt in such
a way that Ψ∗x�t +Π∗xηt=0.
Under determinacy, the dimension of ηt is exactly equal to the number of unstable

eigenvalues, and ηt is therefore uniquely determined. Under indeterminacy, on the
other hand, the number of unstable eigenvalues falls short of the number of forecast
errors, and the forecast error vector ηt is therefore not uniquely determined, which is
at the root of the possibility of sunspot fluctuations. Lubik and Schorfheide (2003),
however, prove the following. By defining UDV 0=Π∗x as the singular value decom-
position of Π∗x, and by assuming that for each �t there always exists an ηt such that
Ψ∗x�t +Π∗xηt=0 is satisfied, the general solution for ηt is given by

ηt =
£
−V·1D−1

11 U
0
·1Ψ

∗
x + V·2M1

¤
�t + V·2M2s

∗
t (7)

where D11 is the upper-left diagonal block of D, containing the square roots of the
non-zero singular values of Π∗x in decreasing order; s

∗
t is a vector of sunspot shocks; and

M1 andM2 are matrices whose entries are not determined by the solution procedure,
and which basically ‘index’ (or parameterise) the model’s solution under indetermi-
nacy. ConcerningM1 andM2 we follow Lubik and Schorfheide (2004), first, by setting
M2s

∗
t=st, where st can therefore be interpreted as a vector of ‘reduced-form’ sunspot

shocks. Second, we choose the matrix M1 in such a way as to preserve continuity of
the impact matrices of the impulse-responses of the model at the boundary between
the determinacy and the indeterminacy region. Specifically, let θ be the parameters’
vector, and letΘI andΘD be the sets of all the θ’s corresponding to the indeterminacy
and, respectively, to the determinacy regions. For every θ ∈ ΘI we identify a corre-
sponding vector θ̃ ∈ ΘD laying just on the boundary between the two regions.5 By
definition, the two impact matrices for the impulse-responses of the model conditional
on θ and θ̃ are given by

∂ξt (θ,M1)

∂�t
= Ψ∗(θ)-Π∗(θ)V·1(θ)D−1

11 (θ)U
0
·1(θ)Ψ

∗
x(θ)+Π

∗(θ)V·2(θ)M1 ≡ (8)

≡ B1(θ) +B2(θ)M1 (9)

5Specifically, for any [φπ, φy]
0 such that θ ∈ ΘI , we choose the vector [φ̃π, φ̃y]0, such that the

resulting θ̃ ∈ ΘD lies just on the boundary between the two regions, by minimising the criterion
C̃=[(φπ-φ̃π)

2+(φy-φ̃y)
2]1/2. It is important to stress that, in general, there is no clear-cut criterion

for choosing a specific vector on the boundary. Minimisation of C̃ is based on the intuitive notion
of taking, as the ‘benchmark’ θ̃, the one that is closest in vector 2-norm to θ.
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and, respectively,

∂ξt(θ̃)

∂�t
= Ψ∗(θ̃)−Π∗(θ̃)V·1(θ̃)D

−1
11 (θ̃)U

0
·1(θ̃)Ψ

∗
x(θ̃) ≡ B1(θ̃) (10)

where Ψ∗(·) ≡ QΨ(·), and Π∗(·) ≡ QΠ(·). We minimise the difference between the
two impact matrices, B1(θ̃)-[B1(θ)+B2(θ)M1]=[B1(θ̃)-B1(θ)]-B2(θ)M1 by means of a
least-squares regression of [B1(θ̃)-B1(θ)] onB2(θ), thus obtaining M̃1=[B2(θ)0B2(θ)]−1×
B2(θ)

0[B1(θ̃)-B1(θ)].
The solution to (1)-(3) is now completely characterised. The forecast error ηt can

be substituted into the law of motion for w1,t,

w1,t = Λ−111 Ω11w1,t−1 + Λ−111 Q1· (Ψ�t +Πηt) (11)

thus obtaining, under both regimes, a VAR(1) representation for ξt,

ξt = A0ξt−1 +B0ut (12)

where ut is vector standard white noise. Finally, the state-space representation of
the model in terms of the three observable variables, Rt, πt, yt, implies the following
observation equation

Yt = C0ξt (13)

with Yt ≡ [Rt, πt, yt]0 and C0=[I3 03×(N0−3)], where N0 is the dimension of the state
vector. (Notice that, in terms of the canonical ‘A-B-C -D’ representation of a state-
space form, the matrix D0 is here equal to D0=03×3.)

2.1.2 The experimental design

Our goal is to assess the performance of (structural) VARs conditional on a DGP
in which neither luck (i.e., changes in the volatilities of the structural shocks), nor
structural change (in the present case, changes in the non-policy parameters, α, γ, κ,
σ, and all of the ρx’s), play any role whatsoever.
We therefore estimate (1)-(3)

• imposing indeterminacy for the pre-October 1979 period and determinacy for
the period following the end of the Volcker stabilisation, by allowing for different
values of ρ, φπ, and φy across periods;

• imposing that α, γ, κ, σ, all of the ρx’s, and all of the σ2x’s, be identical across
regimes. This is obtained by jointly estimating the two models for the pre-
October 1979 and the post-Volcker stabilisation periods.

By showing that this DGP can replicate the key features of the Great Moderation,
our results will illustrate, in the starkest possible way, that existing VAR evidence is
compatible with the good policy explanation of the Great Moderation.
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2.2 Bayesian estimation

We estimate (1)-(3) via Bayesian methods. The following two sub-sections describe
our choices for the priors, and the Random-Walk Metropolis algorithm we use to get
draws from the posterior.

2.2.1 Priors

Following, e.g., Lubik and Schorfheide (2004) and An and Schorfheide (2006), all
structural parameters are assumed, for the sake of simplicity, to be a priori indepen-
dent from one another. The third column of Table 1 reports the parameters’ prior
densities, whereas the fourth and the fifth columns report two key objects character-
ising them, the mode and the standard deviation. Different from the vast majority
of the papers in the literature, we calibrate the Gamma, inverse Gamma, and Beta
prior densities in terms of the mode of the distribution, rather than in terms of the
mean (specifically, we calibrate the densities so that our ‘preferred values’ for the
parameters of interest are equal to the mode). The key reason for doing so is in order
to give the maximal amount of prior weight to our ‘preferred values’, which, on the
other hand, would not be the case if calibration were performed in such a way as to
make the densities’ means equal to such values.

2.2.2 Getting draws from the posterior via Random-Walk Metropolis

We numerically maximise the log posterior–defined as ln L(θ|Y ) + ln P (θ), where
θ is the vector collecting the model’s structural parameters, L(θ|Y ) is the likelihood
of θ conditional on the data, and P (θ) is the prior–via simulated annealing (for a
full description of the methodology, see Appendix A.1) We then generate draws from
the posterior distribution of the model’s structural parameters via the Random Walk
Metropolis (henceforth, RWM) algorithm as described in, e.g., An and Schorfheide
(2006). In implementing the RWM algorithm we exactly follow An and Schorfheide
(2006, Section 4.1), with the single exception of the method we use to calibrate the
covariance matrix’s scale factor–the parameter c below–for which we follow the
methodology described in Appendix D.3 of Benati (2008), which is briefly described
in Appendix A.2 below.
Let then θ̂ and Σ̂ be the mode of the maximised log posterior and its estimated

Hessian, respectively.6 We start the Markov chain of the RWM algorithm by drawing
θ(0) fromN(θ̂, c2Σ̂). For s = 1, 2, ..., N we then draw θ̃ from the proposal distribution
N(θ(s−1), c2Σ̂), accepting the jump (i.e., θ(s) = θ̃) with probability min {1, r(θ(s−1),
θ|Y )}, and rejecting it (i.e., θ(s) = θ(s−1)) otherwise, where

r(θ(s−1), θ|Y ) = L(θ|Y ) P (θ)
L(θ(s−1)|Y ) P (θ(s−1))

6We compute Σ̂ numerically as in An and Schorfheide (2006).
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We run a burn-in sample of 200,000 draws which we then discard. After that, we run
a sample of 200,000 draws, keeping every draw out of 100 in order to decrease the
draws’ autocorrelation, thus ending up with a sample of 2,000 draws.
Table 1 reports the modes and the 90%-coverage percentiles of the distributions

of the model’s structural parameters.

3 Theoretical Properties of the Estimated Data-
Generation Process

In this Section we explore the theoretical properties of the estimated data-generation
process under the two regimes, by analysing the structural VAR(MA) representations
of the model, the structural innovations’ theoretical impact matrices and impulse-
response functions, the VAR(MA)’s reduced-form innovation variances, and the se-
ries’ theoretical variances under determinacy and indeterminacy. By focusing on the
theoretical properties of the DGP, we will therefore show that the ability of Clarida et
al.’s ‘indeterminacy hypothesis’ to replicate the broad features of the Great Modera-
tion as a consequence of a shift in monetary policy has nothing to do with estimation
issues–sample length, choice of the lag order, etc.–but it rather holds in population.
Figure 2, in particular, plots the theoretical impulse-response functions of the model
under the two regimes.
In order to make the exposition clearer, however, it is useful to start with the

model’s theoretical equivalent minimal state-space representation under the two regimes.

3.1 The equivalent minimal state-space representations of
the model under the two regimes

Conditional on the estimates reported in Table 1, the theoretical state-space repre-
sentations of the model under the two regimes can easily be computed. By applying
MATLAB’s routine ss.m to the two state-space forms we then obtain the two equiv-
alent minimal state-space representations (henceforth, EMSSR) of the model,

ξMt =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.69 -0.31 0.29 -0.08 0.09 0.01 0.00
0.32 0.60 0.07 0.10 -0.11 -0.01 0.00
0.44 0.03 0.58 -0.11 0.03 0.00 0.00
-0.32 0.06 -0.09 0.27 -0.25 0.01 0.00
0.07 -0.06 -0.05 -0.31 0.56 0.05 0.00
0.42 -0.23 -0.04 -0.02 1.05 0.45 0.01
0.62 -0.40 0.70 0.39 -0.38 -0.05 0.41

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ξMt−1+
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+

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.55 0.23 0.35 0.12
0.11 0.58 0.55 -0.17
0.49 0.01 0.23 0.09
0.02 -0.16 -0.28 -0.12
-0.32 0.24 -0.03 0.13
0.12 1.17 -0.41 0.01
1.51 -0.17 -0.21 -0.03

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
ut (14)

Yt =

⎡⎣ 0.08 -0.67 -0.68 0.20 -0.22 -0.02 -0.00
0.00 -0.05 0.087 0.41 0.34 -0.76 -0.35
-0.00 -0.17 0.268 0.18 -0.21 0.41 -0.80

⎤⎦ ξMt (15)

under indeterminacy, and

ξMt =

⎡⎢⎢⎢⎢⎢⎢⎣
0.79 0.15 0.21 -0.20 -0.02 0.00
0.34 0.51 0.05 -0.15 -0.01 0.00
-0.20 0.05 0.23 -0.14 0.02 0.00
0.13 -0.12 -0.29 0.42 0.04 0.00
0.20 -0.28 0.24 0.60 0.38 0.01
-0.21 0.55 0.75 -0.53 -0.06 0.41

⎤⎥⎥⎥⎥⎥⎥⎦ ξ
M
t−1 +

⎡⎢⎢⎢⎢⎢⎢⎣
0.68 0.43 -0.38
0.12 -0.29 0.00
-0.02 -0.30 -0.13
-0.24 0.37 -0.01
-0.26 0.50 -1.05
0.04 -1.28 -0.51

⎤⎥⎥⎥⎥⎥⎥⎦ut
(16)

Yt =

⎡⎣ -0.70 -0.64 0.23 -0.18 -0.01 -0.00
-0.03 0.07 0.34 0.36 -0.78 -0.37
-0.18 0.28 0.18 -0.15 0.42 -0.81

⎤⎦ ξMt (17)

under determinacy, where ξMt is the state vector in the EMSSR,7 and Yt is still equal
to Yt ≡ [Rt, πt, yt]0. A comparison between (14)-(15) and (16)-(17) immediately high-
lights a fundamental difference between the two regimes. Whereas under determinacy
the EMSSR has six states, under indeterminacy it has seven.8 An important point
to stress is that the presence of an additional state variable under indeterminacy has
nothing to do with the presence of a sunspot shock. Indeed, first, it can be easily
shown that this feature of the DGP remains unchanged even if we set the variance of
the sunpot shock to zero. Second, and more fundamentally, given that the sunspot
shock is pure white noise, on strictly logical/mathematical grounds it cannot belong
to the state vector, so that the additional state under indeterminacy ought to be
something else.9 Rather, as shown by Benati (2007b), the presence of an additional

7In general, the states of the EMSSR generated by MATLAB’s routine ss.m do not have any
intrinsic meaning whatsoever, as they are simply linear combinations of the states of the original
state-space form.

8The fact that, under indeterminacy, the EMSSR possesses an additional state variable compared
with the determinacy regime was first shown in a previous version of this paper that was presented
at the New York FED on on September 27th, 2006. The slides of the presentation are available from
either of us, while the paper is available either from us, or from the New York FED.

9For an extensive discussion of what the additional state variable under indeterminacy exactly
is, see Benati (2007b). Benati (2007b), in particular, demonstrates mathematically that–different
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state under indeterminacy is a general property of New Keynesian models under this
regime.

3.2 The VARMA representations

Such finding has the following important implication. Since, once the EMSSR has
been appropriately rotated,10 three of the states in ξMt are equal to the three structural
disturbances, this automatically implies that under determinacy, with six states in the
EMSSR, the model possesses a VAR representation in Rt, πt, and yt. Indeed, applying
to the EMSSR of the model under determinacy a MATLAB code for computing
the finite-order VAR representation of a state-space form,11 we obtain the VAR(2)
representation

Yt =

⎡⎣ 1.22 0.01 0.14
-0.04 0.47 0.06
-0.12 -0.04 1.05

⎤⎦
| {z }

BDET
1

Yt−1 +

⎡⎣ -0.32 -0.01 -0.06
0.02 -0.02 -0.03
0.08 0.00 -0.26

⎤⎦
| {z }

BDET
2

Yt−2 + vt,

with Var(vt)=

⎡⎣ 0.40 0.19 -0.14
0.19 0.97 0.08
-0.14 0.08 0.98

⎤⎦ (18)

Under indeterminacy, on the other hand, the very same logic implies that, with one
additional state variable in the EMSSR, the model does not possess a pure VAR rep-
resentation in Rt, πt, and yt, but rather a VARMA one, with a small moving-average
component. Figure 1 illustrates this, by showing the evolution of the coefficients of
the theoretical VAR(∞) implied by the VARMA representation of the model under
indeterminacy, as a function of the lag. A simple illustration of the speed of decay to-
wards zero of the coefficients of the VAR(∞) representation of the model is provided
from what claimed by Canova (2006) and Canova and Gambetti (2007)–the additional state is not
expected inflation, i.e. πt+1|t.
10In general, state-space forms are unique up to a rotation. Specifically, the EMSR

st = Ast−1 +But (I)

Yt = Cst (II)

is, for a given ‘input’ vector ut, observationally equivalent, in terms of ‘output’ vector Yt, to the
rotated state-space form

s̃t = Ãs̃t−1 + B̃ut (III)

Yt = C̃s̃t (IV)

with s̃t ≡ Rst, Ã ≡ RAR−1, B̃ ≡ RB, and C̃ ≡ CR−1. In plain English, this means that for
a given vector white noise input ut, we can obtain exactly the same identical realisations for the
observables via an infinity of state-space forms, all of which are a rotation of (I)-(II), and all of
which are uniquely identified by a specific rotation matrix R.
11The code has been kindly supplied by Juan Rubio-Ramirez.

11



by the evolution of the maximum among the absolute values of the elements of the
AR matrices of the VAR(∞). At the first three lags, such maximum is equal to 1.087,
0.271, and 0.055, respectively, whereas at lags 10 and 20 it decreases to 0.012 and
1.0E-3, respectively, and at lags 50, 75, and 100 it further declines to 2.1E-6, 9.6E-9,
and 6.3E-11, respectively. Finally, the covariance matrix of reduced-form innovations
of the VARMA representation of the model obtained when setting the sunspot shock
to zero is given by

Var(vt)=

⎡⎣ 0.47 0.43 0.06
0.43 1.15 0.16
0.06 0.16 1.32

⎤⎦ (19)

4 Replicating the Great Moderation

4.1 Volatility decreases in population

A comparison between the diagonal elements of (19) and (18) shows that the shift in
the systematic component of monetary policy associated with the move from indeter-
minacy to determinacy is sufficient to generate decreases in the theoretical innova-
tion variances for all series as a simple implication of the Lucas (1976) critique, and
without any need of sunspot shocks. Whereas earlier contributions have interpreted
decreases in reduced-form innovation variances as prima facie evidence in favor of
good luck, and against good policy, our results clearly show such interpretation to be
unwarrented. Further, such policy shift is associated with decreases in the standard
deviations of both inflation and the output gap, from 1.21 to 1.12 and from 2.17
to 1.88 respectively, whereas the standard deviation of the interest rate slightly in-
creases from 1.65 to 1.68. With the estimated standard deviation of sunspot shocks,
the model exhibits clear decreases in both variances and innovation variances when
moving from indeterminacy to determinacy. In particular, the theoretical standard
deviations of Rt, πt, and yt under indeterminacy become equal to 7.68, 7.65, 2.87,
respectively, thus highlighting the ability of the estimated DGP to broadly replicate
the generalised decline in overall macroeconomic volatility associated with the Great
Moderation.

4.2 Results from break tests based on stochastic simulations

Given the decline in the three series’ theoretical innovation variances associated with
the move from indeterminacy to determinacy, structural break tests applied to the
simulated data should point towards significant volatility breaks. In this sub-section
we therefore stochastically simulate the estimated DGP 10,000 times,12 we fit VARs

12The pseudo-sample length is equal to T=100 for both regimes.
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to the simulated data,13 and for each of the three equations of the VAR we perform
Wald tests for a single break across regimes in either the innovation variance or the
equation’s coefficients. Table 2 reports, for each of the three equations, the medians
and the 90%-coverage percentiles of the distributions of the bootstrapped p-values14

for the Wald tests, together with the fraction of bootstrapped p-values below 10%.
As the Table shows, break tests point towards

• weak evidence of breaks in the coefficients of the equations for inflation and the
output gap, with the null of no break being rejected 15% and 10% of the times,
respectively;

• some evidence of breaks in both the coefficients and the innovation variance in
the interest rate equation, with the null of no break being rejected 26% and
21% of the times, respectively; and

• stronger evidence of volatility breaks in the equations for both inflation and the
output gap, with the null of no break being rejected 36% and 39% of the times,
respectively.

Results qualitatively in line with those reported in Table 2 are typical of the
structural VAR-based literature on the Great Moderation. Sims and Zha (2006), for
instance, report that

‘the best fit [of the VAR] is with a version that allows time variation
in structural disturbance variances only. Among versions that allow for
changes in equation coefficients also, the best fit is for a one that allows
coefficients to change only in the monetary policy rule.’

As we already stressed, although such results are routinely interpreted as evidence
against good policy, and in favor of good luck, such interpretation is unwarranted,
and these results should be regarded, in principle, as uninformative for discriminating
between luck and policy.

4.3 Generating ‘Great Inflations’ and ‘Great Moderations’

Figure 3 provides a stark illustration of the ability of Clarida et al.’s ‘indeterminacy
hypothesis’ to replicate the transition from the Great Inflation to the Great Modera-
tion uniquely as a result of improved monetary policy, by plotting a single stochastic
simulation of length T=100 for both regimes from the estimated model. As the figure
shows, the first part of the sample exhibits what, at first blush, clearly looks like a

13We select the VAR lag order based on the Akaike information criterion, based on the joint
sample of length 200.
14Bootstrapping is performed as in Diebold and Chen (1996) applied to the VAR as a whole.
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‘Great Inflation’ episode, with both inflation and the nominal rate displaying wide
and persistent swings, reaching peaks just shy of ten per cent.15 In the second half
of the sample, on the other hand, fluctuations are much more subdued, and do not
exhibit any persistent deviation from equilibrium.

5 Can Structural VARMethods Uncover the Truth?

When applied to the estimated model, can structural VAR methods uncover the
authentic causes of the changes in the DGP across regimes? As this section shows,
the answer is unfortunately ‘No’.

5.1 Theoretical structural policy counterfactuals

We start by analysing theoretical policy counterfactuals, i.e. counterfactuals based on
the theoretical VAR representations of the model under the two regimes. By showing
that structural VAR methods fail to correctly capture the truth in population, we will
therefore illustrate in the starkest possible way that the problems discussed in the
present work have nothing to do with estimation issues–i.e, lag order selection and
the like–but rather point towards fundamental weaknesses of the structural VAR
approach for the present purposes.
As we pointed out in Section 3.2, the model possesses a VAR(2) representation

under determinacy, and a VARMA one with a small moving-average component un-
der indeterminacy. We start by approximating the VAR(∞) implied by the VARMA
representation under indeterminacy with a VAR(100),16 and we augment the VAR(2)
under determinacy with 98 further AR matrices equal to 03×3. Based on the struc-
tural shocks’ theoretical impact matrices for the two regimes, we then put the two
theoretical VARs into the corresponding structural VAR forms,

A−10,INDYt = B̃IND
1 Yt−1...+ B̃IND

100 Yt−100 + �t (20)

A−10,DETYt = B̃DET
1 Yt−1...+ B̃DET

100 Yt−100 + �t (21)

where B̃x
j = A−10,xB

x
j , with x = IND, DET (with IND for ‘indeterminacy’ and DET

‘determinacy’), A−10,x being the impact matrix of the three structural shocks (̃�R,t, �̃π,t,
�̃y,t) at zero, and j = 0, 1, ..., 100. A crucial point to stress is that, since we are here
working with the impact matrices of the three structural shocks, we are implicitly
setting the variance of the sunspot shock to zero–to put it differently, the version
of the model we are working in this sub-section is the one without sunspots. By

15This is conceptually in line with Clarida et al.’s (2000) Figure V on page 172.
16As we pointed out in Section 3.2, at lag 100 the maximum among the absolute values of the

elements of the AR matrix of the VAR(∞) is of an order of magnitude of 10−11, which implies that
all lags beyond the 100th can safely be ignored.
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illustrating the failure of structural VAR-based policy counterfactuals to capture the
truth even in the absence of sunspot shocks, we will therefore show that the problems
discussed in this sub-sections have nothing to do with the presence of sunspot shocks,
and rather pertain to a fundamental problem of VAR-based policy counterfactuals.
After switching the structural monetary rules in the two structural VARs–i.e.,

the first equations in (20) and (21)–we convert the counterfactual structural VARs
we thus obtain into corresponding counterfactual reduced-form VARs, from which
theoretical counterfactual standard deviations for the three series can trivially be
computed. As we pointed out in Section 4.1, under determinacy the true theoretical
standard deviations are equal to 1.68, 1.12, and 1.88 respectively. Quite strikingly, the
corresponding theoretical counterfactual standard deviations are equal to 1.19, 1.10,
and 1.92, thus implying a volatility decrease for two series out of three. Results for
the indeterminacy regime are even more troubling: whereas the largest AR root of the
true VAR representation of the model under this regime is equal to 0.998, very close
to a unit root, the largest root of the counterfactual VAR representation is actually
explosive, being equal to 1.0012. This implies that, when plugging the structural
monetary rule for the determinacy regime into the structural VAR representation
of the model corresponding to the indeterminacy regime, the variance of the three
series becomes infinite, thus highlighting the failure of structural VAR-based policy
counterfactuals to capture the truth.
What is going on here? Why do structural-VAR based policy counterfactuals fail

so badly in population? The reason is not difficult to grasp, and is the following. When
performing counterfactual simulations in structural VARs, the implicit presumption is
that switching the VAR’s estimated structural policy rules should provide a reasonable
approximation to the authentic policy switch, i.e. the one between the Taylor rules
in the underlying DSGE model. As our results show, however, such presumption is,
in general, unwarranted, the key reason being that what is structural as defined by
the underlying DSGE model bears no clear-cut connection with what is defined as
‘structural’ by the structural VAR form of the very same DSGE model, i.e. equations
(20) and (21). The difference between these two notions of what is structural is at the
root of the problem here, and cannot therefore be ‘fixed’, being rather a fundamental
shortcoming of policy counterfactuals based on structural VARs.17

5.2 Impulse-response functions

Let’s now turn to impulse-response functions (henceforth, IRFs). Little change over
time in estimated IRFs to an identified monetary policy shock has been traditionally

17This problem of policy counterfactuals based on structural VARs is extensively analysed by
Benati (2007a). Taking a standard New Keynesian model as DGP, he explores the conditions under
which SVAR-based policy counterfactuals may provide a reasonably good approximation to the
‘authentic’ policy switch, i.e. the one between the Taylor rules in the New Keynesian model. As he
shows, such conditions are extremely restrictive.
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regarded as evidence in favor of good luck, and against good policy. As we will now
show, such evidence is, once again, uninformative for the issue of deciding the role
played by monetary policy in fostering the Great Moderation.
Figure 4 shows, for the two regimes, the medians and the 90%-coverage percentiles

of the distributions of the estimated IRFs to a 100 basis points monetary policy shock,
based on 1,000 stochastic simulations. Specifically, for each of the 1,000 simulations
(i) we generated artificial data under the two regimes from the estimated DGP

and we estimated reduced-form VARs exactly as in Section 4.2, choosing the lag order
based on the AIC.
(ii) Based on the VARs’ estimated covariance matrices, we estimate the structural

impact matrices for the two regimes by imposing the true theoretical sign restrictions
via the procedure introduced by Rubio-Ramirez, Waggoner, and Zha (2005). We
integrate out rotation uncertainty by computing, for each of the 1,000 stochastic
simulations, 1,000 impact matrices satisfying the sign restrictions, and then taking
the average among them.
(ii) Based on the estimated VARs and the structural impact matrices, we compute

the IRFs to a 100 basis points shock to the interest rate.
Two main findings emerge from the Figure. First, the distributions of the esti-

mated IRFs under indeterminacy are much wider than those under determinacy. This
is especially clear for inflation and the nominal rate, much less so for the output gap,
and finds its origin in the much greater persistence exhibited by the system under
indeterminacy. Second, for none of the series it is possible to reject the null that the
IRFs have remained unchanged across regimes.
Although little change in estimated IRFs to a monetary policy shock have rou-

tinely been interpreted as evidence in favor of good luck and against good policy,
these results show that this interpretation is unwarranted.

6 Some Criticisms of Our Analysis, and Our Re-
buttals

6.1 Canova’s criticism

Fabio Canova has circulated a note which is critical of the present work.18 He sum-
marises his main objections as follows:19

‘[N]one of the problems highlighted by Benati and Surico have to do
with VAR methods, per se. It is the choice of experimental design, failure
to recognize the presence of omitted variables in one regime and the choice
of relatively small sample size which drive the results they obtain.’

18See Canova (2006).
19See Canova (2006, page 12, second paragraph).
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In what follows we show that most of Canova’s arguments are simply wrong, and
none of them affects our conclusions.

6.1.1 The omitted state variable under indeterminacy

As we pointed out, the minimal state-space representation of the model has six state
variables under determinacy, and seven under indeterminacy. Canova (2006) states
that the additional state variable under indeterminacy is πt+1|t (i.e. expected inflation
at time t+1, conditional on information available at time t),20 and based on this
conjecture makes two points.

• If you augment the VAR in inflation, the output gap and the nominal interest
rate with expected inflation, the augmented VAR may uncover the true causes
of change in the DGP.

• If you integrate out the presence of the unobserved state variable under indeter-
minacy, the variances of the series are much lower, so that the model cannot
replicate the Great Moderation (see footnote 1, and the variances reported in
Table 1 of Canova’s comment).

Concerning the first point, Canova and Gambetti (2007) take Canova’s conjecture
as the rationale for including measures of expected inflation in their (fixed-coefficient
and time-varying parameters) VARs. Given that, overall, their results are largely
unaffected by the inclusion of expected inflation measures, they conclude that their
evidence runs against Clarida et al.’s (2000) indeterminacy hypothesis about the
sources of the Great Moderation.
The problem with Canova’s and Canova and Gambetti’s position is that, as it

has been demonstrated mathematically by Benati (2007b), the VAR representation
they consider is only one among an infinity of admissible VAR representations for
the economy, so that their evidence is ultimately uninformative for the issue at hand.
Another admissible representation, for example, has expected inflation replaced by the
expected output gap, or by any linear (convex or non-convex) combination of the two.
As a simple corollary, this automatically implies that a negative result–like the one
obtained by Canova and Gambetti (2007)–is not telling us, in principle, anything: to
be informative, the negative outcome should be obtained for all the infinite, possible
representations of the economy. What truly is informative under these circumstances,
on the other hand, is a positive result, i.e. the finding that a particular variable which
is admissible as the fourth element in the VAR representation of the model beyond

20To be precise, Canova (2006) is not explicit about what he actually means by ‘expected inflation’,
which he just labels as πet . Although, in principle, he could mean either πt+1|t or πt|t−1, the latter
can be ruled out on strictly logical grounds. Given that πt|t−1 does not belong to the state vector
of the original state-space form, ξt, there is simply no way that it can belong to the state vector of
the EMSR, st. The only possibility left is therefore πt+1|t.
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Rt, πt, and yt does indeed Granger-cause the first three variables, and/or produces
significant changes in the results.
As for the second issue raised by Canova (2006), the crucial point to stress is

that the presence of an additional state variable under indeterminacy is an integral
part of the intrinsic dynamics of the system under that regime, so that it is simply
not possible to meaningfully talk of the dynamics of inflation, the interest rate, and
the output gap under indeterminacy ‘controlling’ for the effect of this additional
state. To make this point even clearer, consider the following simple example. Under
determinacy the dynamics of the economy only depends on three states, inflation,
the output gap, and the interest rate. Following Canova’s logic, we could say that
‘if we control for (i.e, integrate out) the influence of the interest rate, the variance
of inflation under determinacy would be lower’. This is tautologically true, but the
key problem is that ‘controlling for the influence of the interest rate’ does not have
any meaning whatsoever, for the simple reason that the interest rate–exactly like
the additional unobserved state variable under indeterminacy–is not exogenous, but
it is rather endogenous. You might legitimately want to control for fluctuations in
exogenous driving processes, but controlling for the influence of endogenous variables
is just wrong.21

6.1.2 The experimental design

Our paper simulates a world in which the Great Moderation is exclusively driven by
improved monetary policy, and then asks: ‘When applied to the simulated data, are
the VAR methods used in earlier contributions capable of delivering the true answer
of good policy?’. Canova (2006), on the other hand, is concerned with a completely
different question: ‘Is it possible to specify a DSGE model and a policy shift for which
VAR analysis would uncover the true change in the DGP? 22 Unfortunately, this is
irrelevant for the issue at hand: the fact that I can conceive circumstamces under
which a specific econometric methodology performs well does not tell me anything
about its performance conditional on the only DGP that truly matters, i.e,. the one
which is out there. The reason is very simple: reality is what it is, and you can’t
‘choose’ it to suit the econometric methodologies that you like. As a consequence, in
order to be reasonably confident that the results produced by a specific econometric

21Finally, it is worth stressing that the Great Moderation has been identified as the decline in the
overall volatilities of the series, and Kim and Nelson (1999), McConnell and Perez-Quiros (2000),
Stock and Watson (2002), and Kim, Nelson, and Piger (2004) have not netted out the impact
of inflation expectations when computing the variances of output and inflation. So our paper is
consistent with all previous studies documenting the Great Moderation.
22 ‘If one is interested in measuring the ability of VAR methods to answer the questions of interest,

one should also design an experiment where only the lagged coefficients change. [...] To have
a design with the required features, one should study within regime changes when the nominal
interest rate reacts to lagged output gap and lagged inflation since, by construction, the matrix of
impact coefficients is fixed across regimes while the matrix of lagged coefficients changes’ (Canova,
2006, page 7, third paragraph).
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methodology are sufficiently reliable, such methodology must be shown to perform
well conditional on a wide range of plausible data-generation processes. As this paper
has shown, however, if the truth for the post-WWII United States is reasonably
well described, to a first approximation, by Clarida et al.’s (2000) ‘indeterminacy
hypothesis’, VAR methods as they have been implemented so far may well point
towards the incorrect conclusion of good luck. And this automatically implies that
existing VAR evidence is uninformative for the issue at hand: if I always get good
luck irrespective of what the truth is, such result is quite obviously uninformative
for the issue at hand. The notion that a researcher may therefore pick and choose
a specific DGP in order to show that, conditional on that DGP, his/her favorite
econometric methodology performs well does therefore not appear to us a meaningful
way of discriminating between what works and what doesn’t work.23

6.1.3 The sample size

In this paper we simulate the New-Keynesian model using 100 observations per
regime, which, at the quarterly frequency, correspond to 25 years of data. VAR analy-
ses of the Great Moderation begin the sample period either at the end of the 1950s
or at the beginning of the 1960s and typically split the full sample around October
1979. The sample selection implies that the inference drawn on the VAR estimates is
based on 20 years of data for the ‘bad policy’ regime, and 20-25 years for the ‘good
policy’ regime. Our choice of 100 observations is therefore perfectly in line with the
number of data points available to the econometrician–indeed, this is precisely the
reason why we chose it!
Interestingly, while investigating the minimal sample size that would allow a re-

searcher to reject the (incorrect) null hypothesis of stability of the diagonal elements
of the matrix of VAR autoregressive coefficients, Canova (2006) reports that across
the two regimes

‘[...] differences would be detectable only if at least 120 data for the
interest rate equation, 410 for the inflation equation and 2300 data points
for the output gap equation would be available in each regime’

Canova’s own results therefore represent a serious challenge for existing VAR
studies of the Great Moderation as, with quarterly data, they correspond to 30, 102.5,
and 575 years for each regime. These results imply that, even assuming that Canova’s
conceptual position is entirely correct–on which, as we previously discussed, we
definitely disagree–an econometrician would need several decades of data in order to

23Finally, a DGP should be internally consistent. In the effort of specifying a DGP that may put
VARs under the best of possible lights, Canova (2006) proposes a model in which the private sector
is fully forward-looking, but the monetary authority is fully backward-looking. What is the reason
for this asymmetry? How can we square such a modeling choice with the strong emphasis that many
central banks across the world have given on the forward-looking nature of their policy making?
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reliably identify the causes of the Great Moderation via VAR methods. Given that,
in reality, none of us enjoys such luxury, it is not clear why this should be regarded
as a limitation of our analysis, rather than a needed element of realism.

6.2 A further criticism

A further criticism has been offered, so far, of the present analysis. The work of
Clarida, Gali, and Gertler (2000) and Lubik and Schorfheide (2004), upon which
the present analysis is based, treats the shift from the first to the second regime
as ‘once-and-for-all’, rather than as an ongoing process. As pointed out, e.g., by
Davig and Leeper,24 ‘[o]nce-and-for-all shifts, by definition, are unanticipated, yet
once the shift occurs, agents are assumed to believe the new regime is permanent
and alternative regimes are impossible. But if regime has changed, then regime
can change; knowing this, private agents will ascribe a probability distribution to
regimes. Expectations formation and, therefore, the resulting equilibria will reflect
agents’ beliefs that regime change is possible.’ The key point to understand, here, is
that the problems highlighted in this paper have nothing to do with the specific way
in which policy changes are modelled–‘once-and-for-all’, as opposed to an ongoing
process–and as a result should be expected to carry over, as a simple matter of
logic, even within more realistic settings like those investigated by Davig and Leeper
(2007).

7 Conclusions

Most analyses of the U.S. Great Moderation have been based on structural VAR
methods, and have consistently pointed towards good luck as the main explanation
for the greater macroeconomic stability of recent years. Based on an estimated New-
Keynesian model in which the only sources of change are the move from passive
to active monetary policy, and the presence of sunspots under indeterminacy, we
show that VARs may misinterpret good policy for good luck. In particular, the
estimated DGP exhibits decreases in population in both variances and innovation
variances for all series. Policy counterfactuals based on the theoretical structural
VAR representations of the model under the two regimes fail to capture the truth,
whereas impulse-response functions to a monetary policy shock exhibit little change
across regimes. Since these results are in line with those found in the structural VAR-
based literature on the Great Moderation, our analysis suggests that existing VAR
evidence is compatible with the ‘good policy’ explanation of the Great Moderation.

24See Davig and Leeper (2007).
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A Two Technical Aspects of the Bayesian Estima-
tion Procedure

This appendix discusses in detail two technical aspects the Bayesian estimation pro-
cedure.

A.1 Numerical maximisation of the log posterior

We numerically maximise the log posterior–defined as ln L(θ|Y ) + ln P (θ), where
θ is the vector collecting the model’s structural parameters, L(θ|Y ) is the likelihood
of θ conditional on the data, and P (θ) is the prior–via simulated annealing. Fol-
lowing Goffe, Ferrier, and Rogers (1994) we implement simulated annealing via the
algorithm proposed by Corana, Marchesi, Martini, and Ridella (1987), setting the
key parameters to T0=100,000, rT=0.9, Nt=5, Ns=20, �=10−6, N�=4, where T0 is
the initial temperature, rT is the temperature reduction factor, Nt is the number of
times the algorithm goes through the Ns loops before the temperature starts being
reduced, Ns is the number of times the algorithm goes through the function before
adjusting the stepsize, � is the convergence (tolerance) criterion, and N� is number of
times convergence is achieved before the algorithm stops. Finally, initial conditions
were chosen stochastically by the algorithm itself, while the maximum number of
functions evaluations, set to 1,000,000, was never achieved.

A.2 Calibrating the covariance matrix scale factor

A key problem in implementing Metropolis algorithms is how to calibrate the covari-
ance matrix’s scale factor–the parameter c in subsection _._–in order to achieve
an acceptance rate of the draws close to the ideal one (in high dimensions) of 0.23.
Typically the problem is tackled by starting with some ‘reasonable’ value for c, and
adjusting it after a certain number of iterations during the initial burn-in period.
Specifically, given that the draws’ acceptance rate is decreasing in c, c gets increased
(decreased) if the initial acceptance rate was too high (low). A problem with this ap-
proach is that it does not guarantee that after the adjustment the acceptance rate will
be reasonably close to the ideal one. The approach for calibrating c used in this paper,
on the other hand–which is the same used in Benati (2008)–is based on the idea
of estimating a reasonably good approximation to the inverse relationship between c
and the acceptance rate by running a pre-burn-in sample. Specifically, let C be a grid
of possible values for c–in what follows, we consider a grid over the interval [0.1, 1]
with increments equal to 0.05. For each single value of c in the grid–call it cj–we run
n draws of the RWM algorithm as described in section 2.2.2, storing, for each cj, the
corresponding fraction of accepted draws, fj. We then fit a third-order polynomial to
the fj’s via least squares, and letting â0, â1, â2, and â3 be the estimated coefficients,
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we choose c by solving numerically the equation â0+â1c+â2c2+â3c3=0.23. As the
fraction of accepted draws reported in Table 1 shows, the procedure works quite well.
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Table 1 Bayesian estimates of the structural parameters
Posterior distribution: mode

Prior distribution and 90%-coverage percentiles
Standard Before After the

Parameter Domain Density Mode deviation October 1979 Volcker stabilisation
σ2R R+ Inverse Gamma 0.25 0.25 0.468 [0.415; 0.596]
σ2π R+ Inverse Gamma 0.5 0.5 0.311 [0.227; 0.457]
σ2y R+ Inverse Gamma 0.1 0.25 0.053 [0.043; 0.083]
σ2s R+ Inverse Gamma 0.25 0.25 0.213 [0.144; 0.442] –
κ R+ Gamma 0.05 0.01 0.043 [0.036; 0.057]
σ R+ Gamma 2 1 8.209 [6.589; 10.577]
α [0, 1] Beta 0.75 0.2 0.053 [0.027; 0.091]
γ [0, 1] Beta 0.25 0.2 0.723 [0.668; 0.795]
ρ [0, 1) Beta 0.75 0.2 0.580 [0.503; 0.670] 0.838 [0.788; 0.880]
φπ R+ Gamma 1.0 0.5 0.867 [0.775; 0.901] 1.653 [1.139; 2.711]
φy R+ Gamma 0.15 0.25 0.513 [0.417; 0.701] 1.220 [0.759; 1.683]
ρR [0, 1) Beta 0.25 0.2 0.412 [0.301; 0.526]
ρπ [0, 1) Beta 0.25 0.2 0.426 [0.332; 0.530]
ρy [0, 1) Beta 0.25 0.2 0.795 [0.725; 0.842]

Fraction of

accepted draws 0.261



Table 2 Testing for stability in the VAR equations: bootstrapped
p-values for the Wald testsa

Innovation variance Coefficients
Median and Fraction Median and Fraction

Equation: 90% percentiles below 0.1 90% percentiles below 0.1
interest rate 0.441 [0.011; 0.905] 0.212 0.276 [0.010; 0.876] 0.263
inflation 0.210 [0.002; 0.863] 0.357 0.499 [0.016; 0.968] 0.151
output gap 0.155 [0.003; 0.864] 0.386 0.523 [0.054; 0.961] 0.100
a Medians and 90% percentiles of the p-values distributions. 1,000 replications
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Figure 1  Evolution of the coefficients of the VAR(∞) representation of the 
model under indeterminacy, as a function of the lag order 
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Figure 2  Theoretical impulse-response functions under the two regimes 
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Figure 3  Replicating the Great Moderation: a typical stochastic simulation of 
the estimated DGP 
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Figure 4  Medians and 90%-coverage percentiles of the distributions of the 
estimated impulse-response functions to a 100 basis points increase in the 
nominal rate, under determinacy and indeterminacy (based on 1,000 
replications) 




